Answer:
In order to improve visibility
Explanation:
Infrared telescopes are made using infrared cameras that contain infrared detectors which are solid-state and are maintained at very cold (cryogenic) temperatures
Infrared radiation is absorbed by water vapor which is present in the Earth's atmosphere, leading to the limitation of the use of infra red telescopes at high altitudes such as mountains, high flying planes or satellites
Answer:
Angular speed, 
Explanation:
It is given that,
The top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of, v = 1.2 mm/yr

Velocity, 
Height of the tower, h = 55 m
The height of the tower is equivalent to the radius. Let
is the angular speed of the tower’s top about its base. The relation between the angular speed and the angular speed is given by :




So, the average angular speed of the tower’s top about its base is
. Hence, this is the required solution.
Answer:
μ = 0.18
Explanation:
Let's use Newton's second Law, the coordinate system is horizontal and vertical
Before starting to move the box
Y axis
N-W = 0
N = W = mg
X axis
F -fr = 0
F = fr
The friction force has the formula
fr = μ N
fr = μ m g
At the limit point just before starting the movement
F = μ m g
μ = F / m g
calculate
μ = 34.8 / (19.8 9.8)
μ = 0.18
Answer:
6.86 N
Explanation:
Applying,
F = mg............... Equation 1
Where F = Force exerted by gravity on the mass, m = mass, g = acceleration due to gravity
Note: The Force exerted by gravity on the mass is thesame as the weight of the body.
From the question,
Given: m = 700 g = (700/1000) = 0.7 kg
Constant: g = 9.8 m/s²
Substitute these values into equation 1
F = 9.8(0.7)
F = 6.86 N
Answer:
m = 3.91 kg
Explanation:
Given that,
Mass of the object, m = 3.74 kg
Stretching in the spring, x = 0.0161 m
The frequency of vibration, f = 3.84 Hz
When the object is suspended, the gravitational force is balanced by the spring force as :



k = 2276.52 N/m
The frequency of vibration is given by :



m = 3.91 kg
So, the mass of the object is 3.91 kg. Hence, this is the required solution.