The distance traveled by the hockey player is 0.025 m.
<h3>The principle of conservation of linear momentum;</h3>
- The principle of conservation of linear momentum states that, the total momentum of an isolated system is always conserved.
The final velocity of the hockey play is calculated by applying the principle of conservation of linear momentum;

The time taken for the puck to reach 15 m is calculated as follows;

The distance traveled by the hockey player at the calculated time is;

Learn more about conservation of linear momentum here: brainly.com/question/7538238
Mamie Phipps Clark is a noted woman psychologist, best known for her research on race, self-esteem, and child development. Her work alongside her husband, Kenneth Clark, was critical in the 1954 Brown vs Board of Education case and she was the first black woman to earn a degree from Columbia University.
Sound waves travel faster through <em>solids</em> than they do through gases or liquids. <em>(C) </em>They don't travel through vacuum at all.
Example:
Speed of sound in normal air . . . around 340 m/s
Speed of sound in water . . . around 1,480 m/s
Speed of sound in iron . . . around 5,120 m/s
Answer:
A) OA, AB, BC
B) 25m/s^2
C) see explanation
D) 25
E) Rest
Explanation:
From the Velocity time graph shown:
The positive slope = OA ; This is positive because, it is the point of uniform acceleration on the graph.
Constant slope = AB, the slope here is constant because, AB on the graph is the point of constant velocity.
-ve slope = BC
B) Acceleration of body in path OA.
Acceleration = change in Velocity / time
Acceleration = (150 - 0) / 6
Acceleration = 150/6 = 25m/s^2
C) Path AB is Parallel to the because it marks the period of constant velocity (that is Velocity does not increase or decrease during the time interval).
D) Length of BC
BC corresponds to the distance moved, that velocity / time
Velocity = 150 ; time = 6
Therefore Distance (BC) = 150/6 = 25
E.) Velocity =0 ; Hence body is at rest
Answer:
Plane will 741.6959 m apart after 1.7 hour
Explanation:
We have given time = 1.7 hr
So if we draw the vectors of a 2d graph we see that the difference in angles is = 
Speed of first plane = 730 m/h
So distance traveled by first plane = 730×1.7 = 1241 m
Speed of second plane = 590 m/hr
So distance traveled by second plane = 590×1.7 = 1003 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.
Using the law of cosine,
representing the distance between the planes, we see that:

r = 741.6959 m