Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is

Answer:

Explanation:
Using the expression shown below as:

Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = 
is the activation energy
T is the temperature
Given that:

N = 10 moles
1 mole = 
So,
N = 
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:

![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)

Answer:
Complete question is:
write the following decorators and apply them to a single function (applying multiple decorators to a single function):
1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”
2. The decorator will return the wrapper per usual.
3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.
4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.
5. Apply both decorators (by @ operator to greetings()).
6. Invoke the greetings() function and capture the result.
Code :
def strong_decorator(func):
def func_wrapper(name):
return "<strong>{0}</strong>".format(func(name))
return func_wrapper
def em_decorator(func):
def func_wrapper(name):
return "<em>{0}</em>".format(func(name))
return func_wrapper
@strong_decorator
@em_decorator
def Greetings(name):
return "{0}".format(name)
print(Greetings("Hello"))
Explanation:
Answer:
wheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
I say the answers is A but if you mean ventilation in the area of the room then answer B