The impact behavior of plastic materials is strongly dependent upon the temperature. At high temperatures, materials are more ductile and have high impact toughness. At low temperatures, some plastics that would be ductile at room temperature become brittle.
Answer:
a) A suspended floor is a ground floor with a void underneath the structure. The floor can be formed in various ways, using timber joists, precast concrete panels, block and beam system or cast in-situ with reinforced concrete. However, the floor structure is supported by external and internal walls.
b) Soil exploration consists of determining the profile of the natural soil deposits at the site, taking the soil samples and determining the engineering properties of soils using laboratory tests as well as in-situ testing methods
c) Bulking in sand Occurs When dry sand interacts with the atmospheric moisture. Presence of moisture content forms a thin layer around sand particles. This layer generates the force which makes particles to move aside to each other. This results in the increase of the volume of sand.
d) In a nutshell, bearing capacity is the capacity of soil to support the loads that are applied to the ground above. It depends primarily on the type of soil, its shear strength and its density. It also depends on the depth of embedment of the load – the deeper it is founded, the greater the bearing capacity.
Explanation:
<h2>please follow me</h2>
Answer:
water sample have more water content
Explanation:
given data
soil 1 is saturated with water
unit weight of water = 1 g/cm³
soil 2 is saturated with alcohol
unit weight of alcohol = 0.8 g/cm³
solution
we get here water content that is express as
water content = ....................1
here soil is full saturated so is 100% in both case
so put here value for water
water content = 100 % × 1
water content = 1 g
and
now we get for alcohol that is
water content = 100 % × 0.8
water content = 0.8 g
so here water sample have more water content
Answer:
12.5%
Explanation:
Compaction ratio= Volume before reduction/volume after reduction
Compaction ratio= 8/1
% reduction in volume= Volume after reduction/Volume before reduction× 100= 1/compaction ratio × 100
% reduction in volume= 1/(8/1) × 100
=12.5