Answer:
, 
Explanation:
The drag force is equal to:

Where
is the drag coefficient and
is the frontal area, respectively. The work loss due to drag forces is:

The reduction on amount of fuel is associated with the reduction in work loss:

Where
and
are the original and the reduced frontal areas, respectively.

The change is work loss in a year is:
![\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)](https://tex.z-dn.net/?f=%5CDelta%20W%20%3D%20%280.3%29%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Ccdot%20%281.20%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%29%5Ccdot%20%2827.778%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%29%5E%7B2%7D%5Ccdot%20%5B%281.85%5C%2Cm%29%5Ccdot%20%281.75%5C%2Cm%29%20-%20%281.50%5C%2Cm%29%5Ccdot%20%281.75%5C%2Cm%29%5D%5Ccdot%20%2825%5Ctimes%2010%5E%7B6%7D%5C%2Cm%29)


The change in chemical energy from gasoline is:



The changes in gasoline consumption is:





Lastly, the money saved is:


Answer:
<em> - 14.943 W/m^2K ( negative sign indicates cooling ) </em>
Explanation:
Given data:
Area of FPC = 4 m^2
temp of water = 60°C
flow rate = 0.06 l/s
ambient temperature = 8°C
exit temperature = 49°C
<u>Calculate the overall heat loss coefficient </u>
Note : heat lost by water = heat loss through convection
m*Cp*dT = h*A * ( T - To )
∴ dT / T - To = h*A / m*Cp ( integrate the relation )
In (
) = h* 4 / ( 0.06 * 10^-3 * 1000 * 4180 )
In ( 41 / 52 ) = 0.0159*h
hence h = - 0.2376 / 0.0159
= - 14.943 W/m^2K ( heat loss coefficient )
Answer:
Combination circuit; The basic strategy for the analysis of combination circuits involves using the meaning of equivalent resistance for parallel branches to transform the combination circuit into a series circuit.
Example:
The use of both series and parallel connections within the same circuit. In this case, light bulbs A and B are connected by parallel connections and light bulbs C and D are connected by series connections. This is an example of a combination circuit.
Answer and Explanation:
• 1 thread awaits the incoming request
• 1 thread responds to the request
• 1 thread reads the hard disk
A multithreaded file server is better than a single-threaded server and a finite-state machine server because it provides better response compared to the rest and can make use of the shared Web data.
Yes, there are circumstances in which a single-threaded server might be better. If it is designed such that:
- the server is completely CPU bound, such that multiple threads isn't needed. But it would account for some complexity that aren't needed.
An example is, the assistance number of a telephone directory (e.g 7771414) for an community of say, one million people. Consider that each name and telephone number record is sixty-four characters, the whole database takes 64 MB, and can be easily stored in the server's memory in order to provide quick lookup.
NOTE:
Multiple threads lead to operation slow down and no support for Kernel threads.