The air drag is a force that depends on the speed of an object relative to the wind. Under certain conditions, it can be modeled as:

Where b is a constant.
As a falling object reaches a speed so that its weight is cancelled out by the air drag, the object will reach a maximum velocity.
In a speed vs time gaph, the speed would approach the maximum speed like an asymptote.
On the other hand, since the object falls from rest, the initial speed on the graph must be zero.
Taking these considerations into account, the correct graph for the movement of an object that falls from rest if air drag is not ignored, is option B.
The velocity of Satellite A is 2% greater than velocity of satellite B.
The given parameters;
- <em>Altitude of Satellite A = 500 km</em>
- <em>Altitude of Satellite B = 800 km</em>
The forces acting on the Satellites are given as follows;


Thus, the velocity of Satellite A is 2% greater than velocity of satellite B.
Learn more about velocity of satellite here: brainly.com/question/13981089
Shadows blocking part of the light from the star.
A quick warning though this only works on planets either close to the star or planets that are very large.
Also to ensure that the shadows are planets the shadows have to move or orbit around the star. IE The shadow moves
Answer:
12.5 ft/s
Explanation:
Height of person = 6 ft
height of lamp post = 10 ft
According to the question,
dx / dt = 5 ft/s
Let the rate of tip of the shadow moves away is dy/dt.
According to the diagram
10 / y = 6 / (y - x)
10 y - 10 x = 6 y
y = 2.5 x
Differentiate both sides with respect to t.
dy / dt = 2.5 dx / dt
dy / dt = 2.5 (5) = 12.5 ft /s
Answer:
When going from slower medium to a faster medium, light is bent _downwards_.
Explanation:
hope this helps you!