Answer:
12.56 A.
Explanation:
The magnetic field of a conductor carrying current is give as
H = I/2πr ............................... Equation 1
Where H = Magnetic Field, I = current, r = distance, and π = pie
Making I the subject of the equation,
I = 2πrH............... Equation 2
Given: H = 1 T, r = 2 m.
Constant: π = 3.14
Substitute into equation 2
I = 2×3.14×2×1
I = 12.56 A.
Hence, the magnetic field = 12.56 A.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:
