Answer:
A) The speed of the water must be 8.30 m/s.
B) Total kinetic energy created by this maneuver is 70.12 Joules.
Explanation:
A) Mass of squid with water = 6.50 kg
Mass of water in squid cavuty = 1.55 kg
Mass of squid = 
Velocity achieved by squid = 
Momentum gained by squid = 
Mass of water = 
Velocity by which water was released by squid = 
Momentum gained by water but in opposite direction = 
P = P'


B) Kinetic energy does the squid create by this maneuver:
Kinetic energy of squid = K.E =
Kinetic energy of water = K.E' = 
Total kinetic energy created by this maneuver:


It started off with 68% less than it did at the peak, and later created a void and melted the remainder of the ice at about 92%
Answer:
1. a
2. b
3. b
Explanation:
1.
Resistance is the property of a conductor to offer resistance to the flow of current. The lower the resistance better is the conductivity of wire.
We know that the resistance of a wire depends on several factor which are inter-connected by an equation as:
where:
R = resistance of the wire
length of the wire
cross sectional area of the wire
from the above relation we observe that

- Also when the temperature of the wire is significantly high then the lattice vibration cause obstruction in the path of the flowing charges and reduce the current flow.
2.
As the collision between the electrons and protons increases the speed of the flow of charges will decrease because the opposite charges attract each other and as we know that electrical current is the rate of flow of charge.
3.
Heating up of wire due to sunlight will cause lattice vibration in the conductor and will obstruct the movement of the charges which build up electric current, hence increasing the resistance of conductivity.
Answer:
the change in thermal energy of the projectile is 43.8 kJ
Explanation:
Given;
mass of the object, m = 5kg
initial velocity of the projectile, v₁ = 200 m/s
final velocity of the projectile, v₂ = 150 m/s
To determine the the change in the thermal energy of the projectile and air, we consider change in potential and kinetic enrgy of the projectile. Since the projectile was fired over level ground, change in potential energy is zero.
Then, change in thermal energy of the projectile, KE = Δ¹/₂mv²
KE = Δ¹/₂mv² = ¹/₂m(v₁²-v₂²)
KE = ¹/₂ × 5(200²-150²) = 2.5(17500) = 43750 J = 43.8 kJ
Therefore, the change in thermal energy of the projectile is 43.8 kJ