1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
3 years ago
14

¿Que trabajo realizas cuando subes una bolsa de la compra cuya masa es 4,5 kg desde el suelo hasta una mesa de 90 cm de altura?¿

Trabajo has realizado para trasladar esa bolsa por el pasillo de tu casa?
Physics
1 answer:
WITCHER [35]3 years ago
6 0
We are going to do this today
You might be interested in
Potassium ions (K+) move across a 7.0 -mm- thick cell membrane from the inside to the outside. The potential inside the cell is
Reil [10]

Explanation:

Relation between potential energy and charge is as follows.

           U = qV

or,    \Delta U = q \times \Delta V

                   = 1.6 \times 10^{-19} \times 70 \times 10^{-3}

                   = 112 \times 10^{-22} J

or,                = 1.12 \times 10^{20} J

Therefore, we can conclude that change in the electrical potential energy \Delta U is 1.12 \times 10^{20} J.

7 0
2 years ago
A cohesive force between the liquids molecules is responsible for the fluids is called​
kiruha [24]

Answer:

static force

Explanation:

mark me brainliest

5 0
2 years ago
Read 2 more answers
6. A 4 kg object hangs below a 6 kg object by a string of negligible mass. If the 6 kg object is pulled upward by a force of 440
MrRissso [65]

Answer:

T =176 N

Explanation:

from diagram

F -(m_1+m_2_g) = (m_1+m_2_g)a

440 - (6+4)g = (6+4)a

a =\frac{440-10*9.8}{10}

a =34.2 m/s^2

frrom free body diagram of mass m2 = 4kg

T -m_2g =m_2a

T = m_2(g +a)

T = 4(9.81+34.2)

T =176 N

7 0
3 years ago
A garrafa térmica (também conhecida como "vaso de Dewar") é um dispositivo extremamente útil para conservar, no seu interior, co
igor_vitrenko [27]

Answer:

A opção A está correta.

O sistema formado pela garrafa térmica e a água perde 400 cal de calor para o meio ambiente.

Option A is correct.

The system formed by the thermos and the water loses 400 cal of heat to the environment.

Explanation:

Quando a temperatura de um sistema reduz, fica claro que o sistema perdeu calor ou energia térmica. Como a temperatura é um dos indicadores mais claros disso, esta conclusão é hermética e correta.

Mas, para saber a quantidade de calor perdida para o meio ambiente, agora fazemos alguns cálculos de energia térmica.

Transferência de calor de ou para o sistema de água e garrafa térmica = c × ΔT

c = capacidade térmica do sistema de água e garrafa térmica = 80 cal /°C

ΔT = Alteração da temperatura do sistema de água e garrafa térmica = (temperatura final) - (temperatura inicial) = 55 - 60 = -5°C

Calor transferido = 80 × -5 = -400 cal.

O sinal de menos mostra que o calor é transferido para fora do sistema, ou seja, o calor é perdido no sistema.

Espero que isto ajude!!!

English Translation

The thermos (also known as "Dewar vase") is an extremely useful device to conserve bodies (essentially liquid) at high temperatures, minimizing energy exchanges with the environment, which is generally colder. A thermos contains water at 60 o C. The thermos + water set has a thermal capacity of C = 80 cal / o C. The system is placed on a table and, after a considerable period of time, its temperature decreases to 55 o C. In this case, it is concluded that the system formed by the thermos and the water inside:

a) lost 400 cal. B) gained 404cal. C) lost 4 850 cal. D) gained 4 850 cal. E) did not exchange heat with the external environment.

Solution

When a system's temperature reduces, it is clear to conclude that the system has lost heat or thermal energy. Since temperature is one of clearest indicators of this, this conclusion is airtight and correct.

But, to know the amount of heat lost to the environment, we now do some thermal energy calculations.

Heat transferrred from or to the water and thermos system = c × ΔT

c = heat capacity of the water and thermos system = 80 cal/°C

ΔT = Change in temperature of the water and thermos system = (final temperature) - (initial temperature)

= 55 - 60 = -5°C

Heat transferred = 80 × -5 = -400 cal.

The minus sign shows that the heat is transferred out of the system, that is, the heat is lost from the system.

Hope this Helps!!!

7 0
3 years ago
A steel beam of mass 1975 kg and length 3 m is attached to the wall with a pin that can rotate freely on its right side. A cable
Nuetrik [128]

Answer:

a) 29062.125 N·m

b) 0 N·m

c) Torque, due \ to \ tension =L\cdot Tsin\theta = \frac{M\cdot L\cdot g}{2}

d) T = 11186.02 N

Explanation:

We are given

Beam mass = 1975 kg

Beam length = 3 m

Cable angle = 60° above horizontal

a) We have the formula for torque given as follows;

Torque about the pin = Force × Perpendicular distance of force from pin

Where the force = Force due to gravity or weight, we have

Weight = Mass × Acceleration due to gravity = 1975 × 9.81 = 19374.75 N

Point of action of force = Midpoint for a uniform beam = length/2

∴ Point of action of force = 3/2 = 1.5 m

Torque due to gravity = 19374.75 N × 1.5 m = 29062.125 N·m

b) Torque about the pinned end due to the contact forces between the pin and the beam is given by the following relation;

Since the distance from pin to the contact forces between the pin and the beam is 0, the torque which is force multiplied by perpendicular distance is also 0 N·m

c) To find the expression for the tension force, T we find the sum of the moment forces about the pin as follows

Sum of moments about p is given as follows

∑M = 0 gives;

T·sin(θ) × L= M×L/2×g

Therefore torque due to tension is given by the following expression

Torque, due \ to \ tension =L\cdot Tsin\theta = \frac{M\cdot L\cdot g}{2}

d) Plugging in the values in the torque due to tension equation, we have;

3\times Tsin60 = \frac{1975\times 3\times 9.81}{2} = 29062.125

Therefore, we make the tension force, T the subject of the formula hence

T= \frac{29062.125}{3 \times sin(60)} = 11186.02 N

8 0
3 years ago
Other questions:
  • When you are paddling a canoe, you push the water backwards with your paddle, which in turn will push you forward. Which law of
    12·1 answer
  • HURRY!
    5·1 answer
  • A train departs from its station at a constant acceleration of 5m/s2. What is the speed of the train at the end of 20 seconds
    8·1 answer
  • What will be the current when the capacitor has acquired 1/4 of its maximum charge?
    9·1 answer
  • How do I solve such problem???
    8·1 answer
  • Why are L waves not usually seen on a seisogram?
    5·1 answer
  • What is the RMS speed of Helium atoms when the temperature of the Helium gas is 206.0 K? (Possibly useful constants: the atomic
    5·2 answers
  • A charge alters the space around it. What is this alteration of space called? Electric ether Electric Force Electric field Charg
    9·1 answer
  • 4. How long will it take a car travelling with a speed of 160 km hr to cover a distance of 700 meters? Hint: km/hr should be con
    14·1 answer
  • You redo the primitive yo yo experiment (Figure 1), but instead of holding the free end of the string stationary, you move your
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!