Answer: Option 1 and 11
1. Organic solvents are often flammable.
II. Organic solvents are often toxic.
Explanation:
Organic solvents are often flammable and Organic solvents are often toxic are the reasons why organic chemistry is a primary target of green chemistry because green chemistry is the use of principles or approach to remove hazardous or toxic substances from chemical.profuctd or processes to make them fit or safe for use and the solvents of organic chemist are toxic, therefore green chemistry remove the toxic substances.
Answer:
1.18 moles of CS₂ are produced by the reaction.
Explanation:
We present the reaction:
5C + 2SO₂ → CS₂ + 4CO
5 moles of carbon react to 2 moles of sulfur dioxide in order to produce 1 mol of carbon disulfide and 4 moles of carbon monoxide.
As we do not have data from the SO₂, we assume this as the excess reagent. We convert the mass of carbon to moles:
70.8 g / 12 g/mol = 5.9 moles
Ratio is 5:1, so 5 moles of carbon react to produce 1 mol of CS₂
Then, 5.9 moles will produce (5.9 . 1) / 5 = 1.18 moles
Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.
Answer:
The answer is attached below
Explanation:
To draw the Lewis structure the sulphur willl be placed in the centre with the Valence electron sorrounding it the electrons between sulphu and oxygen to form bonds
Answer:
I think the answer is A!!!