the pressure of the gas increases
<h3>
Answer:</h3>
0.0253 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 0.456 g H₂O (water)
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.025305 mol H₂O ≈ 0.0253 mol H₂O
D. One chimp cleaning and grooming the hair of another chimp
4 moles of water are produced
Explanation:
- 4 moles of water are produced when 5 moles of hydrogen is reacted with 2 moles of oxygen gas
- The balanced equation given is when 2 moles of hydrogen reacts with 1 mole of oxygen and it forms 2 moles of water.
- The equation we have to solve is the 5 moles of hydrogen is reacting with 2 moles of oxygen gas, we can write the equation as
- This is the balanced equation when 5 moles of hydrogen reacts with 2 moles of oxygen. The balanced equation means the number of hydrogen atoms and oxygen atoms on both sides would be equal in number.
A single-displacement reaction, also known as asingle-replacement reaction, is a type of chemicalreaction<span> where an element reacts with a compound and takes the place of another element in that compound. This type of </span>reaction<span> is typically pictured like this: Here, A replaces B in the compound BC.</span>