1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
7

A space transportation vehicle releases a 470-kg communications satellite while in a circular orbit 350 km above the surface of

the Earth. A rocket engine on the satellite boosts it into an orbit 2350 km above the surface of the Earth. How much energy does the engine have to provide for this boost?
Physics
1 answer:
natima [27]3 years ago
8 0

Answer:

E = 3.194 x 10⁹ J = 3.194 GJ

Explanation:

The formula for the absolute potential energy is:

U = - GMm/2r

where,

G = Gravitational Constant = 6.67 x 10⁺¹¹ N m²/kg²

M = mass of Earth = 5.972 x 10²⁴ kg

m = mass of satellite = 470 kg

r = distance between the center of Earth and satellite

Thus, the energy required from engine will be difference between the potential energies.

E = U₂ - U₁

E = - GMm/2r₂ - (- GMm/2r₁)

E = (GMm/2)(1/r₁ - 1/r₂)

where,

r₁ = Radius of Earth + 350 km = 6371 km + 350 km = 6721 km = 6.721 x 10⁶ m

r₂=Radius of Earth + 2350 km=6371 km + 2350 km= 8721 km = 8.721 x 10⁶ m

therefore,

E = [(6.67 x 10⁺¹¹ N m²/kg²)(5.972 x 10²⁴ kg)(470 kg)/2](1/6.721 x 10⁶ m - 1/8.721 x 10⁶ m)

<u>E = 3.194 x 10⁹ J = 3.194 GJ</u>

You might be interested in
Aristotle believed which of the following to be true?
Bumek [7]

Answer:

number 2

Explanation:

5 0
3 years ago
What spheres are part of the earths system​
Mama L [17]

Answer:

northern and southern sphere

Explanation:

4 0
3 years ago
Read 2 more answers
A heat pump is to be used for heating a house in winter. The house is to be maintained at 70°F at all times. When the temperatur
Anna35 [415]

Answer:

\dot{W_{H} } = 4244.48 Btu/h

Explanation:

Temperature of the house, T_{H} = 70^{0} F

Convert to rankine, T_{H} = 70^{0}+ 460 = 530 R

Heat is extracted at 40°F i.e T_{L} = 40^{0}F  = 40 + 460 = 500 R

Calculate the coefficient of performance of the heat pump, COP

COP = \frac{T_{H} }{T_{H} - T_{L}  } \\COP = \frac{530 }{530 - 500  }\\ COP = \frac{530}{30} \\COP = 17.67

The minimum power required to run the heat pump is given by the formula:

\dot{W_{H} } = \frac{\dot{Q_{H} }}{COP} \\...............(*)

Where the heat losses from the house, \dot{Q_{H} } = 75,000 Btu/h

Substituting these values into * above

\dot{W_{H} } = \frac{75000}{17.67} \\ \dot{W_{H} } = 4244.48 Btu/h

3 0
3 years ago
More people end up in U.S. emergency rooms because of fall-related injuries than from any other cause. At what speed v would som
miss Akunina [59]

Answer:

v_{f}=6.47m/s

Explanation:

Given data

Distance d=7.00 ft= 7*(1/3.281) =2.1336m

Initial velocity vi=0m/s

To find

Final velocity

Solution

From Kinematic equation we know that:

v_{f}^{2} =v_{i}^{2}+2gd\\v_{f}^{2}=0+2(9.81m/s^{2} ) (2.1336m)\\v_{f}^{2}=41.86\\v_{f}=\sqrt{41.86}\\v_{f}=6.47m/s

6 0
3 years ago
A room with 3.1-m-high ceilings has a metal plate on the floor with V = 0V and a separate metal plate on the ceiling. A 1.1g gla
miss Akunina [59]

Answer:

The ball traveled 0.827 m

Explanation:

Given;

distance between the metal plates of the room, d = 3.1 m

mass of the glass, m = 1.1g

charge on the glass, q = 4.7 nC

speed of the glass ball, v = 4.8 m/s

voltage of the ceiling, V = +3.0 x 10⁶ V

The repulsive force experienced by the ball when shot to the ceiling with positive voltage, can be calculated using Coulomb's law;

F = qV/d

|F| = (4.7 x 10⁻⁹ x 3 x  10⁶) / (3.1)

|F| = 4.548 x 10⁻³ N

F = - 4.548 x 10⁻³ N

The net horizontal force experienced by this ball is;

F_{net} = F_c - mg\\\\F_{net} = -4.548 *10^{-3} - (1.1*10^{-3} * 9.8)\\\\F_{net} = -15.328*10^{-3} \ N

The work done between the ends of the plate is equal to product of the  magnitude of net force on the ball and the distance traveled by the ball.

W = F_{net} *h\\\\W = 15.328 *10^{-3} *  h

W = K.E

15.328*10^{-3} *h = \frac{1}{2}mv^2\\\\ 15.328*10^{-3} *h = \frac{1}{2}(1.1*10^{-3})(4.8)^2\\\\ 15.328*10^{-3} *h =0.0127\\\\h = \frac{0.0127}{15.328*10^{-3}}\\\\ h = 0.827 \ m

Therefore, the ball traveled 0.827 m

4 0
4 years ago
Other questions:
  • The force component along the displacement varies with the magnitude of the displacement, as shown in the graph. (a) 0 to 1.0 m,
    6·1 answer
  • How do I calculate the speed of light and the distance between the earth and the moon?
    11·1 answer
  • A bicyclist travels the first 1600 m of a trip at an average speed of 8 m/s, travels the next 1200 m in 90 s and spends the last
    5·1 answer
  • Most papers do not reflect light very well because its surface is somewhat rough. State True or False.
    11·1 answer
  • Most ocean waves obtain their energy and motion from _____.
    9·1 answer
  • Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface. When she lands on Noveria, a distant planet in
    10·1 answer
  • Please help, thank you to anyone who answers! Will mark brainliest, give a thanks and a 5 star.
    12·1 answer
  • What are good ways to remember formulas?
    9·1 answer
  • During a home run, the batter only needs to run around all 4 bases if he wants to, since the ball cleared the outfield fence.
    6·1 answer
  • A father (75 kg) was standing watching TV, minding his own business when one of his kids (20 kg) approached him at 2m/s heading
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!