Answer:
The angle for the forward Mach line is 19.47°
The angle for the rearward Mach line is 5.21°
Explanation:
From table A-1 (Modern Compressible Flow: with historical perspective):
(M₁ = 3)
If Po₁ = Po₂

Table A-1:

Table A-5:
v₁ = 49.76°
μ₁ = 19.47°
v₂ = 60.55°
μ₂ = 16°
θ = 60.55 - 49.76 = 10.79°
The angle for the forward Mach line is:
μ₁ = 19.47°
The angle for the rearward Mach line is:
θr = μ₂ - θ = 16 - 10.79 = 5.21°
<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
Answer:
0.906 N
Explanation:
Formula for magnetic force acting on current carrying cable:

Where I = 345A is the current in the wire, B =
is the magnetic magnitude generated by Earth. L = 46.9 m is the cable length.
is the angle between vector B and cable direction.


Answer:
Explanation:
The standard equation of the sinusoidal wave in one dimension is given by

Here, A be the amplitude of the wave
λ be the wavelength of the wave
v be the velocity of the wave
Φ be the phase angle
x be the position of the wave
t be the time
this wave is travelling along positive direction of X axis
The frequency of wave is f which relates with velocity and wavelength as given below
v = f x λ
The relation between the time period and the frequency is
f = 1 / T.
Answer:
1.97 * 10^8 m/s
Explanation:
Given that:
n = 1.52
Recall : speed of light (c) = 3 * 10^8 m/s
Speed (v) of light in glass:
v = speed of light / n
v = (3 * 10^8) / 1.52
v = 1.9736 * 10^8
Hence, speed of light in glass :
v = 1.97 * 10^8 m/s