Speed is the rate at which something covers a distance; velocity is the same but it takes into account whether it goes forwards or backwards; and acceleration is the rate of an increase in speed.
(a) The plastic rod has a length of L=1.3m. If we divide by 8, we get the length of each piece:

(b) The center of the rod is located at x=0. This means we have 4 pieces of the rod on the negative side of x-axis, and 4 pieces on the positive side. So, starting from x=0 and going towards positive direction, we have: piece 5, piece 6, piece 7 and piece 8. Each piece is 0.1625 m long. Therefore, the center of piece 5 is at 0.1625m/2=0.0812 m. And the center of piece 6 will be shifted by 0.1625m with respect to this:

(c) The total charge is

. To get the charge on each piece, we should divide this value by 8, the number of pieces:

(d) We have to calculate the electric field at x=0.7 generated by piece 6. The charge on piece 6 is the value calculated at point (c):

If we approximate piece 6 as a single charge, the electric field is given by

where

and d is the distance between the charge (center of piece 6, located at 0.2437m) and point a (located at x=0.7m). Therefore we have

poiting towards the center of piece 6, since the charge is negative.
(e) missing details on this question.
Answer:
<em>Hewo Otaku Kun Here! (UwU)</em>
Explanation:
1. A rock sitting at the edge of a cliff has potential energy. If the rock falls, the potential energy will be converted to kinetic energy.
2. Tree branches high up in a tree have potential energy because they can fall to the ground.
3. A stick of dynamite has chemical potential energy that would be released when the activation energy from the fuse comes into contact with the chemicals.
4. The food we eat has chemical potential energy because as our body digests it, it provides us with energy for basic metabolism.
5. A stretched spring in a pinball machine has elastic potential energy and can move the steel ball when released.
6. When a crane swings a wrecking ball up to a certain height, it gains more potential energy and has the ability to crash through buildings.
7. A set of double "A" batteries in a remote control car possess chemical potential energy which can supply electricity to run the car.
<em>happy to help!</em>
<em>from: Otaku Kun ^^</em>