Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
Answer:
Explanation:Artificial selection is distinct from natural selection in that it describes selection applied by humans in order to produce genetic change. When artificial selection is imposed, the trait or traits being selected are known, whereas with natural selection they have to be inferred. In most circumstances and unless otherwise qualified, directional selection is applied, i.e., only high-scoring individuals are favored for a quantitative trait. Artificial selection is the basic method of genetic improvement programs for crop plants or livestock (see Selective Breeding). It is also used as a tool in the laboratory to investigate the genetic properties of a trait in a species or population, for example, the magnitude of genetic variance or heritability, the possible duration of and limits to selection, and the correlations among traits, including with fitness.
The relation between density and mass and volume is

the dose required is 2.5 tsp
each tsp contain 5mL
So dose required in mL = 2.5 X 5 = 12.5 mL
the mass will be calculated using following formula


The mass of dose in grams will be 15.38 g