Saturn has the most extensive ring system in our solar system & most of the particles floating around in the ring are ice...
Answer=Saturn
Answer:
positive H and negative S
Explanation:
For a reaction to be spontaneous, the absolute best combination is a negative Delta H and a positive Delta S. When they are both positive, the reaction is only spontaneous at higher temperatures. When they are both negative, the reaction is only spontaneous at lower temperatures. and again if a catalyst is added to the reaction, the activation energy is lowered because a lower-energy transition state is formed. The catalyst does not affect the energy of the reactants or products (and thus does not affect ΔG).
So from these discussions
Ea does not affect G value at all (whether +Ea or -Ea).
And for product to be formed the reaction should be spontaneous, where H is negative and S positive else the reaction will yield low product.
Answer:
189.71 secs
Explanation:
We know that decomposition is a first order reaction;
So;
ln[A] = ln[A]o - kt
But;
[A]o = 1.00 M
[A] = 0.250 M
t =135 s
Hence;
ln[A] - ln[A]o = kt
k = ln[A] - ln[A]o/t
k = ln(1) - ln(0.250)/135
k =0 - (-1.386)/135
k = 1.386/135
k= 0.01
So time taken now will be;
ln[A] - ln[A]o = kt
t = ln[A] - ln[A]o/k
t = ln (3) - ln(0.450)/0.01
t = 1.0986 - (-0.7985)/0.01
t = 1.0986 + 0.7985/0.01
t = 189.71 secs
<span>Good Morning!
</span><span>reactants
</span><span>
Substances that make up a chemical reaction, in order to be combined or separated, are called reagents. These reagents can be of the most varied types and origins. The result of this reaction is called a "product."
Hugs</span>
Answer:
10.5g
Explanation:
First, let us calculate the number of mole of NaHCO3 present in the solution. This is illustrated below:
Volume = 250mL = 250/1000 = 0.25L
Molarity = 0.5M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.5 x 0.25
Mole = 0.125 mole
Now, we shall be converting 0.125 mole of NaHCO3 to grams to obtain the desired result. This can be achieved by doing the following:
Molar Mass of NaHCO3 = 23 + 1 + 12 +(16x3) = 23 + 1 +12 +48 = 84g/mol
Number of mole of NaHCO3 = 0.125 mole
Mass of NaHCO3 =?
Mass = number of mole x molar Mass
Mass of NaHCO3 = 0.125 x 84
Mass of NaHCO3 = 10.5g
Therefore, 10.5g of NaHCO3 is needed.