Answer:
Bromine gains an electron
Explanation:
According to oxidation and reduction
There are:
3.41 moles of C
4.54 moles of H
3.40 moles of O.
Why?
To solve the problem, the first thing that we need to do is to write the chemical formula of the ascorbic acid.

Now, we know that there are 100 grams of the compound, so, the masses of each element will represent the percent in the compound.
We have that:

To know the percent of each element, we need to to the following:

So, we know that for the 100 grams of the compound, there are:
40.92 grams of C
4.58 grams of H
54.49 grams of O
We know the molecular masses of each element:

Now, to calculate the number of moles of each element, we need to divide the mass of each element by the molecular mass of each element:

Hence, we have that there are 3.41 moles of C, 4.54 moles of H, and 3.40 moles of O.
Have a nice day!
Answer:
The value of
for this reaction at 1200 K is 4.066.
Explanation:
Partial pressure of water vapor at equilibrium = 
Partial pressure of hydrogen gas at equilibrium = 
Total pressure of the system at equilibrium P = 36.3 Torr
Applying Dalton's law of partial pressure to determine the partial pressure of hydrogen gas at equilibrium:



The expression of
is given by:


The value of
for this reaction at 1200 K is 4.066.
Answer:
The given atom is of Ca.
Explanation:
Given data:
Speed of atom = 1% of speed of light
De-broglie wavelength = 3.31×10⁻³ pm (3.31×10⁻³ / 10¹² = 3.31×10⁻¹⁵ m)
What is element = ?
Solution:
Formula:
m = h/λv
m = mass of particle
h = planks constant
v = speed of particle
λ = wavelength
Now we will put the values in formula.
m = h/λv
m = 6.63×10⁻³⁴kg. m².s⁻¹/3.31×10⁻¹⁵ m ×( 1/100)×3×10⁸ m/s
m = 6.63×10⁻³⁴kg. m².s⁻¹/ 0.099×10⁻⁷m²/s
m = 66.97×10⁻²⁷ Kg/atom
or
6.69×10⁻²⁶ Kg/atom
Now here we will use the Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
Now in given problem,
6.69×10⁻²⁶ Kg/atom × 6.022 × 10²³ atoms/ mol × 1000 g/ 1kg
40.3×10⁻³×10³g/mol
40.3 g/mol
So the given atom is of Ca.
The volume of a 1.86-carat diamond in cubic centimeters is 0.106 cm³
Given,
The density of a diamond is 3.513 g/cm³.
We have to find out the volume of a 1.86-carat diamond in cubic centimeters.
Convert the units of the diamond from carat to grams, we have:
(1.86 carats) x (0.200 g / 1 carat) = 0.372 g
The volume of the diamond is obtained by dividing the mass by the density, therefore using the formula, we get
v = m / d
v = 0.372 g / (3.51 g/cm³) = 0.1059 cm³
or, v = 0.106 cm³ (approx)
Therefore, the volume of a 1.86-carat diamond is approximately 0.106 cm³.
To learn more about the volume, visit: brainly.com/question/1578538
#SPJ9