A nanoparticle is larger than an atom. A nanoparticle is usually made from a few hundred atoms. These particles range from 1 nanometers to 100 nanometers. On the other hand an atom ranges from 0.1 nanometers to 105 nanometers. Using the sizes above, one can clearly see and understand that an atom is smaller.
Answer:
N - 1s²2s²2p³
Explanation:
Nitrogen is located in the p-block of the periodic table (groups 13-18) and is on the 2nd period.
The 2nd period tells us the principal energy level (a quantum number) is n = 2. Therefore, it must have already filled up the 1s sublevel.
The groups 13-18 on period 2 tells us that the 2s sublevel is also filled.
Nitrogen is located in Group 15. That means that there are 3 electrons that have filled the 2p sublevel, out of a possible 6.
Therefore, our electron configuration is 1s²2s²2p³
2p³ (Shorthand Config)
[He] 2s²2p³ (Noble Gas Config)
Answer:

Explanation:
Hello,
In this case, it is widely known that for isochoric processes, the change in the enthalpy is computed by:

Whereas the change in the internal energy is computed by:
So we compute the initial and final temperatures for one mole of the ideal gas:

Next, the change in the internal energy, since the volume-constant specific heat could be assumed as ³/₂R:

Then, the volume-pressure product in Joules:

Finally, the change in the enthalpy for the process:

Best regards.
The overall balanced reaction equation is;
4Zn(s) + 10H^+(aq) + NO3^-(aq) -----> 4Zn^2+(aq) + NH4^+(aq) + 3H2O(l)
<h3>What is the balanced reaction equation?</h3>
The redox reaction equation is said to be balanced when the number of electron gained is equal to the number of electrons lost.
Now;
1. Reduction and oxidation half-reactions
Zn(s) -----> Zn^2+(aq) + 2e
And
NO3^-(aq) ---->NH4^+(aq) + 3H2O(l)
2. Using the H2O and H+ to balance O and H;
4Zn(s) + 10H^+(aq) + NO3^-(aq) -----> 4Zn^2+(aq) + NH4^+(aq) + 3H2O(l)
3. Balancing the electrons lost and gained; 4Zn(s) + 10H^+(aq) + NO3^-(aq) + 8e -----> 4Zn^2+(aq) + NH4^+(aq) + 3H2O(l) + 8e
4. The overall balanced reaction equation is;
4Zn(s) + 10H^+(aq) + NO3^-(aq) -----> 4Zn^2+(aq) + NH4^+(aq) + 3H2O(l)
Learn more about redox reaction:brainly.com/question/13293425
#SPJ1