Answer:
45.5
Step-by-step explanation:
Use pyth theorem to find the whole bottom side. Then sub 16 by 13. # is the small segmented area. The small segmented tri is 10.5 area. The big tri is 56. Sub 10.5 from 56 to get 45.5.
Answer:
g(0.9) ≈ -2.6
g(1.1) ≈ 0.6
For 1.1 the estimation is a bit too high and for 0.9 it is too low.
Step-by-step explanation:
For values of x near 1 we can estimate g(x) with t(x) = g'(1) (x-1) + g(1). Note that g'(1) = 1²+15 = 16, and for values near one g'(x) is increasing because x² is increasing for positive values. This means that the tangent line t(x) will be above the graph of g, and the estimates we will make are a bit too big for values at the right of 1, like 1.1, and they will be too low for values at the left like 0.9.
For 0.9, we estimate
g(0.9) ≈ 16* (-0.1) -1 = -2.6
g(1.1) ≈ 16* 0.1 -1 = 0.6
Answer:
78.5 %
Step-by-step explanation:
the probability = π(2)² / (4×4) ×100%
= 4π /16 × 100%
= π/4 ×100%
= (π×25)%
= 3.14 × 25 %
= 78.5 %
Sandra has .5 of flour left after making 3 batches of cookies