Answer:
The 3rd one is correct
Explanation:
Protons and neutrons have approximately the same mass, about 1.67 × 10−24 grams, which scientists define as one atomic mass unit (amu) or one Dalton. Each electron has a negative charge (−1) equal to the positive charge of a proton (+1). Neutrons are uncharged particles found within the nucleus.
Answer:
Increased heat makes all the molecules in the tea/water mix vibrate and move around a great deal more, thus increasing the rate of diffusion, and therefore increasing the rate of brewing.
Explanation:
hope i help lol :)
Answer:

Explanation:
pH is derived from the concentration of hydronium ions in a solution. Hydrocyanic acid is HCN.
First, we shall figure out the moles of HCN:

If HCN was a strong acid:
HCN has a 1:1 ratio of H+ ions, the moles of H+ is also the same.
To find the molarity, we now divide by Liters. This gets us:

Finally, we plug it into the definition of pH:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


However, since HCN is a weak acid, it only partially dissociates. The
of HCN is
.
![K_a = \frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%20%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
We can use an ice table to determine that when x = H+,

![[H^+] = 8.83*10^{-6}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%208.83%2A10%5E%7B-6%7D)
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


The answer is 84.00661 grams
The question is incomplete. The complete question is :
C. Balance these fossil-fuel combustion reactions. (1 point)
C8H18(g) + 12.5O2(g) → ____CO2(g) + 9H2O(g) + heat
CH4(g) + ____O2(g) → ____CO2(g) + ____H2O(g) + heat
C3H8(g) + ____O2(g) → ____CO2(g) + ____H2O(g) + heat
C6H6(g) + ____O2(g) → ____CO2(g) + ____H2O(g) + heat
Solution :
C8H18(g) + 12.5O2(g) → __8__CO2(g) + 9H2O(g) + heat
When 1 part of octane reacts with 12.5 parts of oxygen, it gives 8 parts of carbon dioxide and 9 parts of water along with liberation of energy.
CH4(g) + __2__O2(g) → __1__CO2(g) + __2__H2O(g) + heat
When 1 part of methane reacts with 2 parts of oxygen, it gives 1 part of carbon dioxide and 2 parts of water along with liberation of energy.
C3H8(g) + __5__O2(g) → __3__CO2(g) + __4__H2O(g) + heat
When 1 part of propane reacts with 5 parts of oxygen, it gives 3 part of carbon dioxide and 4 parts of water along with liberation of energy.
C6H6(g) + __1/2__O2(g) → __6__CO2(g) + __3__H2O(g) + heat
When 1 part of propane reacts with 1/2 parts of oxygen, it gives 6 part of carbon dioxide and 3 parts of water along with liberation of energy.