I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.
Answer:
Matter always takes space (or has volume).
The answer to this question would be: lower molar concentration
Osmotic pressure is influenced by the number of ions and the concentration of the molecule in the solution. In NaCl, the molecule will split into 1 Na+ ion and 1 Cl- ion which results in 2 ions per compound. In MgCl2, the compound will split into 1 Mg2+ ion and 2 Cl- ion which results in 3 ions. Therefore, the osmotic pressure of MgCl2 will be 3/2 times of NaCl.
MgCl2 will need less concentration to achieve same osmotic pressure as NaCl. If the MgCl2 solution is isotonic with NaCl, the concentration of MgCl2 would be lower than NaCl
Answer:
Gases have mass, because they are made up molecules which have mass