Blank 1: polar
The difference in electronegativity between N and H causes electrons to preferentially orbit N, making the bond polar.
Blank 2: trigonal pyramidal
There are four “things” attached to N - 3 H’s and 1 lone pair of electrons. The four things together are arranged into a tetrahedral formation. However, the lone pairs don’t actually contribute to the shape of the molecule per se; it’s only the actual atoms that do. The lone pair creates a bit of repulsion that pushes the 3 H’s down, creating a trigonal pyramidal shape (as opposed to a trigonal planar one).
Blank 3: polar
The molecule as a whole is also polar because the “things” around it, though arranged in a tetrahedral pattern, are not all the same. The side of the molecule with the lone pair is slightly negative, while the side with the 3 H’s is slightly positive due to the differences in electronegativity described above.
Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.