Electrical current will flow through a solid by the means of
electrons. The electrons in the solid
must be able to move from lower to higher electrical potential. The electric
current in certain solid electrolytes like ice is entirely composed of flowing
ions.
As per bernoulli's principle

here
= pressure upwards
= pressure downwards
= velocity of air upwards
= velocity of air downwards
now from this equation we can say that the pressure difference will be

now the force due to this pressure difference will be

so this is the above force which is given above
Answer:
8 seconds
Explanation:
Answer:
Explanation:
Going up
Time taken to reach maximum height= usin∅/g
=3 secs
Maximum height= H+[(usin∅)²/2g]
=80+[(60sin30)²/20]
=125 meters
Coming Down
Maximum height= ½gt²
125= ½(10)(t²)
t=5 secs
Answer:
original mass of the block of ice is 38.34 gram
Explanation:
Given data
cup mass = 150 g
ice temperature = 0°C
water mass = 210 g
water temperature = 12°C
ice melt = 2 gram
to find out
solution
we know here
specific heat of aluminum is c = 0.900 joule/gram °C
Specific heat of water C = 4.186 joule/gram °C
so here temperature difference is dt = 12- 0 = 12°C
so here heat lost by water and cup are given by
heat lost = cup mass × c × dt + water mass × C × dt
heat lost = 150 × 0.900 × 12 + 210 × 4.186 × 12
heat lost = 12168.72 J
so
mass of ice melt here = heat lost / latent heat of fusion
here we know latent heat of fusion = 334.88 joule/gram
so
mass of ice melt = 12168.72 / 334.88
mass of ice melt is 36.337554 gram
so mass of ice is here = mass of ice melt + ice melt
mass of ice = 36.337554 + 2
mass of ice = 38.337554 gram
so original mass of the block of ice is 38.34 gram
Answer:
emf = 11.667 V
Explanation:
Given: charge q = 0.060 C, electric potential energy E =0.70 J,
Solution :
by definition 1 volt = 1 joule per coulomb
so Voltage = emf = E/C
emf = 0.70 J / 0.060 C
emf = 11.667 V