Answer:
The Aufbau Principle simply helps us determine electron configuration of an atom by stating that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy level, then they fill subshells of higher energy level. For example, the 1s subshell is filled before the 2s subshell is occupied. Now, when trying to figure out the electron configuration of a calcium, you need to know its atomic number to determine its amount of total electrons. Calcium has an atomic number of 20, which means it has 20 protons and 20 electrons. First remember that the "s" subshell only holds 2 electrons, the "p" subshell only hold 6 electrons, and the "d" subshell only holds up to 10 electrons. Using the Aufbau principle below, we can determine that the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s is now full we'll move to the 3p where we'll place the next six electrons. We now go to the 4s orbital where we place the remaining two electrons. With this, the calcium electron configuration will be:

Hope that helps you understand!
Answer:
<u>84.00 kPa = 630.084 torr</u>
Formula for kPa to torr: For an approximate result, multiply the pressure value by 7.501. <em><u>84* 7.501</u></em>
<u>84.00 kPa = 0.831683168 atm</u>
Formula for kPa to atm: for an approximate result, divide the pressure value by 101. <em><u>84/101</u></em>
Answer:
0.3mol C8H18
Explanation:
For this we must first look at the reaction taking place:
C8H18+O2 --> H2O + CO2
Balancing the equation we get:
2(C8H18)+25(O2) --> 18(H2O) + 16(CO2)
Form there we now need to know how many moles of Octane are needed to produce 2.4moles of H2O. The conversion is as follows:
2.4molH2O ((2mol of C8H18)/(18mol of H2O)) = 0.3mol C8H18