1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
9

The thermal efficiency of two reversible power cycles operating between the same thermal reservoirs will a)- depend on the mecha

nisms being used b)- be equal regardless of the mechanisms being used c)- be less than the efficiency of an irreversible power cycle
Engineering
1 answer:
mestny [16]3 years ago
4 0
C ,, i’m pretty sure .
You might be interested in
Risks in driving never begins with yourself, but with other drivers who take risks.
Ymorist [56]

False! Just saying. You could be under the influence, or just have no clue as to what you're doing.

8 0
2 years ago
The major resisting force in gravity dam? ​
inna [77]

The self weight of dam.

6 0
3 years ago
Read 2 more answers
List and describe three classifications of burns to the body.
DiKsa [7]

AnswerWhat Are the Classifications of Burns? Burns are classified as first-, second-, or third-degree, depending on how deep and severe they penetrate the skin's surface. First-degree burns affect only the epidermis, or outer layer of skin. The burn site is red, painful, dry, and with no blisters.

Explanation:

8 0
3 years ago
Read 2 more answers
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
3 years ago
Water from the Earth's surface turns into a gas, or water vapor, when it is warmed and
bagirrra123 [75]

Answer:

Evaporation.

Explanation:

Evaporation is the stage of the Water Cycle where water turns into water vapor. The steps following Evaporation in order include Condensation, Precipitation, and Transpiration.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which best describes the body in terms of simple machines?
    6·1 answer
  • After the load impedance has been transformed through the ideal transformer, its impedance is: + . Enter the real part in the fi
    8·1 answer
  • First person to tell me what this car is gets 10 points
    10·2 answers
  • Consider uniaxial extension of a test specimen. It has gauge length L = 22 cm (the distance between where it is clamped in the t
    6·1 answer
  • Which of these are an ethical issue
    14·1 answer
  • Fig. 4 shows a simply-supported beam with supports A and B. The beam is subjected to three forces, 2000 N, 4000 N and 1500 N in
    5·1 answer
  • Which process made making copies of technical drawings easier?
    8·1 answer
  • A step-up transformer has 20 primary turns and 400 secondary turns. If the primary current is 30 A, what is the secondary curren
    15·1 answer
  • Please help me. I have no idea what I'm doing.​
    14·2 answers
  • The complete stress distribution obtained by superposing the stresses produced by an axial force and a bending moment is correct
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!