The modulus of elasticity is 28.6 X 10³ ksi
<u>Explanation:</u>
Given -
Length, l = 5in
Force, P = 8000lb
Area, A = 0.7in²
δ = 0.002in
Modulus of elasticity, E = ?
We know,
Modulus of elasticity, E = σ / ε
Where,
σ is normal stress
ε is normal strain
Normal stress can be calculated as:
σ = P/A
Where,
P is the force applied
A is the area of cross-section
By plugging in the values, we get
σ =
σ = 11.43ksi
To calculate the normal strain we use the formula,
ε = δ / L
By plugging in the values we get,
ε =
ε = 0.0004 in/in
Therefore, modulus of elasticity would be:
Thus, modulus of elasticity is 28.6 X 10³ ksi
Answer:
D) Louisiana, to prevent homes from blowing away in hurricanes.
Explanation:
Louisiana is famous for hurricanes i think that if they were well prepared and had deeper foundation the damage may lower by a good lot.
Answer:
q=39.15 W/m²
Explanation:
We know that
Thermal resistance due to conductivity given as
R=L/KA
Thermal resistance due to heat transfer coefficient given as
R=1/hA
Total thermal resistance
Now by putting the values
We know that
Q=ΔT/R
So heat transfer per unit volume is 39.15 W/m²
q=39.15 W/m²
Answer:
a) -1.46 x 10∧-5, 1.445x 10∧-4, -6.355 x 10∧-4
b) 3.926 x 10∧-4, -2.626 x 10∧-4
c) 6.552 x 10∧-4, 6.5 x 10∧-5
Explanation:
a) -1.46 x 10∧-5, 1.445x 10∧-4, -6.355 x 10∧-4
b) 3.926 x 10∧-4, -2.626 x 10∧-4
c) 6.552 x 10∧-4, 6.5 x 10∧-5
The explanation is shown in the attachment. I hope i have been able to help.