Answer:
It is a well known fact that the earth rotates around the sun in an inclined axis which is approximately 23 degree. The inclined nature of earth axis causes variation in the solar heat received at any place on the earth surface. The hemisphere facing the sun due to this axial tilt, gets higher sun energy as compared to the opposite side. The hemisphere which faces the sun will experience summer whereas the hemisphere away from sun will experience winter.
In each of the hemisphere the polar areas will receive higher radiation and longer daytime during the summer season. However it has been observed that there is difference in radiation received at different areas of earth surface and radiated. The tropical areas have lower reflectance and thus a large part of incoming solar radiation have been absorbed along the tropics. The poles though have longer daytime during summer and hence greater solar radiation but due to high reflectance radiate more energy. Thus the tropical areas have surplus energy as compared to deficit energy areas of poles. This difference in energy creates a heat imbalance.
This net heat difference between poles and equator gives rise to a global circulation system leading to flow of heat from the net energy excess areas to deficit areas. This circulation takes place through atmosphere as well as oceans and different process of climate viz. evaporation, transpiration, rainfall, wind, convection, oceanic circulations etc work as tools of this system
Answer:
The radius 4 is maximum in convex surface
Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).