Answer:
Explanation:
The principle applied is the Markovnikoff's rule which states that when hydrogen chloride adds to a double bond, the hydrogen atoms join to the carbon that already has the most hydrogen atoms bonded to it. The rule wa postulated by a russian chemist known as Vladimir Markovnikoff.
In the markovnikoff's rule, there are sveral conditions that must be met, one of them is that no free radicals must be involved.
The reaction and the structure of the product is as shown in the attachment.
This process is called filtration. This process is a solid-fluid separation by the use of a medium wherein only the fluid (gases or liquids) can go through it. The medium is called the filter while the fluid that passed through the filter is called the filtrate. The solid particles are the large particles which cannot pass through the filter.
The solid compound, K2SO4 contains a cation called K+ and an anion called SO42-. In this case, there are 2 atoms of potassium, 1 atom of sulfur and 4 moles of oxygen. The compound also contains ionic bonds because of the composing non-metals and metal.
Answer:
3.37 × 10²³ molecules
Explanation:
Given data:
Mass of C₆H₁₂O₆ = 100 g
Number of molecules = ?
Solution:
Number of moles of C₆H₁₂O₆:
Number of moles = mass/molar mass
Number of moles = 100 g/ 180.16 g/mol
Number of moles = 0.56 mol
Number of molecules:
1 mole contain 6.022 × 10²³ molecules
0.56 mol × 6.022 × 10²³ molecules /1 mol
3.37 × 10²³ molecules
Answer:
a)
b)
Explanation:
a) The reaction:

The free-energy expression:

![E=E_{red}-E_{ox]](https://tex.z-dn.net/?f=E%3DE_%7Bred%7D-E_%7Box%5D)
The element wich is reduced is the Fe and the one that oxidates is the Mg:

The electrons transfered (n) in this reaction are 2, so:


b) If you have values of enthalpy and enthropy you can calculate the free-energy by:

with T in Kelvin

