A student determines that 23.1 J of heat are required to raise the temperature of 6.67 g of an
Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
Explanation:
Different heating process affect the microstructure of the steel in different ways. Thus, imparting different properties to the steel. For example, annealing is done is done to impart softness to steel, hardening is done to hardened the steel( eg: carburizing, nitriding, cyaniding) whereas tempering is done to improve the ductility of the steel.
Steel mainly contains iron and carbon. This percentage of carbon and iron decides the property of the steel. It is the % of carbon which is altered in different heating process that to obtained the desire microstructure in steel.
Hi there!
• Avogadro's number = 6.023 × 10²³
• No.of molecules in N = 1.806 × 10²² [ Given ]
It's known that :-
Number of molecules = Moles × Avogadro's number
=> 1.806 × 10²² = Mol. × 6.023 × 10²³
=> Mole =

=> Moles = 0.03 mol.
Hence, 0.03 mol. is th' required answer.
~ Hope it helps!
Answer:
[tex]128^{o}C[/tex]minimum temperature will the reaction become spontaneous.
Explanation:

From the given,







Therefore,
minimum temperature will the reaction become spontaneous.