Mechanical waves can help in the treatment of cancer due to heat generated by the high frequency waves.
<h3>What is mechanical wave?</h3>
A mechanical wave is a wave that requires material medium for its propagation, example include;
- water waves,
- sound waves, and
- seismic waves.
<h3> Mechanical waves in treatment of cancers</h3>
Sound wave in example of mechanical wave because it requires material medium for its propagation.
High-frequency sound waves (HIFU) is used in the treatment of cancer because the strong beam generates heat which is directed to a specific part of a cancer.
The heat generated destroys the cancer cells.
Thus, mechanical waves can help in the treatment of cancer due to heat generated by the high frequency waves.
Learn more about mechanical waves here: brainly.com/question/9242091
#SPJ1
Answer: 3.75 M
Explanation:
400 mL = 0.4 L
NaOH has a molar mass of around 40 g/mol.
= 1.5 moles
Molarity =
= 3.75 M
Brad was suffering from HYPERthermia because his temp was 41°C which is equivalent to 106°F. His body temperature in kelvins is 314.15K
Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
Answer:
The method is accurate in the calculation of the 
Explanation:
As a first step we have to calculate the <u>average concentration </u>of
find it by the method.

Then we have to find the<u> standard deviation:</u>

For the confidence interval we have to use the formula:
μ=Average±
Where:
t=t student constant with 95 % of confidence and 5 data=2.78
μ=
± 
upper limit: 0.84
lower limit: 0.75
If we compare the limits of the value obtanied by the method (Figure 1 Red line) with the reference material (Figure 1 blue line) we can see that the values obtained by the method are within the values suggested by the reference material. So, it's method is accurate.