Answer:
The value is
Explanation:
From the question we are told that
The mass of the object is
The unstressed length of the string is
The length of the spring when it is at equilibrium is
The initial speed (maximum speed)of the spring when given a downward blow
Generally the maximum speed of the spring is mathematically represented as
Here A is maximum height above the floor (i.e the maximum amplitude)
and is the angular frequency which is mathematically represented as
So
=>
Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as
=>
=>
Generally at equilibrium position the net force acting on the spring is
=>
=>
So
=>
An atom's mass number equals the number of protons plus the number of neutrons.
Hope this helps! (:
Answer:
Explanation:
Part 0
All the spring moves is 2 cm
x = 2 cm * [1 m / 100 cm ]
x = 0.020 meters
F = k*d
100N = k * 0.02 m
100 N / 0.02 = k
5000 N / m
Part A
The spring feels a force of 100 N - - 100N = 200 N because each person is pulling in the opposite direction.
F = k * x
200N = 5000 N/m * d
200 / 5000 = d
d = 0.04 meters.
Part B
10.2 kg must be converted to a force as experienced here on earth.
F = m * g
g = 9.81
m = 10.2
F = 10.2 * 9.81
F = 100.06 N
F = k * d
100.06 = 5000 * d
d = 100.06 / 5000
d = 0.02 meters.
Explanation:
The principle of an electric motor is based on the current carrying conductor which produces magnetic field around it. A current carrying conductor is placed perpendicular to the magnetic field so that it experiences a force.
The largest electric motors are used for ship propulsion, pipeline compression and pumped-storage applications with ratings reaching 100 megawatts. Electric motors are found in industrial fans, blowers and pumps, machine tools, household appliances, power tools and disk drives.