Answer:N=322.53 rpm
Explanation:
Given
Linear velocity (v)=1.25 m/s
Position from center is 3.7 cm
we know



and 


N=322.53 rpm
Answer:
Regardless of how the steps are documented, the goal of scientific method is to gather data that will validate or invalidate a cause and effect relationship.
Hope this helped!!!
(a) The equation for the work done in stretching the spring from x1 to x2 is ¹/₂K₂Δx².
(b) The work done, in stretching the spring from x1 to x2 is 11.25 J.
(c) The work, necessary to stretch the spring from x = 0 to x3 is 64.28 J.
<h3>
Work done in the spring</h3>
The work done in stretching the spring is calculated as follows;
W = ¹/₂kx²
W(1 to 2) = ¹/₂K₂Δx²
W(1 to 2) = ¹/₂(250)(0.65 - 0.35)²
W(1 to 2) = 11.25 J
W(0 to 3) = ¹/₂k₁x₁² + ¹/₂k₂x₂² + ¹/₂F₃x₃
W(0 to 3) = ¹/₂(660)(0.35)² + ¹/₂(250)(0.65 - 0.35)² + ¹/₂(105)(0.89 - 0.65)
W(0 to 3) = 64.28 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:

Now by substituting values in, we get
d = 19.796m
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2