Answer:
it A texture and colour I
Explanation:
I just did this
Answer:
a)
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
the required distance is 40.98 m
Explanation:
Given that;
velocity of the river u = 1.70 m/s
velocity of boat v = 14.0 m/s
Now to get the velocity of the boat relative to shore;
( north of east), we say
a² + b² = c²
(1.70)² + (14.0)² = c²
2.89 + 196 = c²
198.89 = c²
c = √198.89
c = 14.1028 m/s
tan∅ = v/u = 14 / 1.7 = 8.23529
∅ = tan⁻¹ ( 8.23529 ) = 83.0765° north of east
Therefore, the velocity of the boat relative to shore is;
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
width of river = 340 m,
ow far downstream has the boat moved by the time it reaches the north shore in meters = ?
we say;
340sin( 90° - 83.0765°)
⇒ 340sin( 6.9235°)
= 40.98 m
Therefore, the required distance is 40.98 m
The power applied to move the box anywhere is
(20 n) x (distance moved) / (time to move the distance) .
With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.