Answer:
The x component of the resultant force is -7.27N.
Explanation:
To obtain the x component of the resultant force, first we have to know the x components of the other forces. To do this, we just have to do some trigonometry:

Since both vectors are in the left side of the y-axis, they have a negative x component. So:

Finally, we sum both components to obtain the component of the resultant force:

In words, the x component of the resultant force is -7.27N.
I believe this is it
The centripetal force is given by
F = mv^2 / r
When v' = v/2,
F' = mv'^2/r = m(v/2)^2/r = mv^2/4r = F/4.
So the centripetal force is divided by 4.
A. The English system uses one unit for each category of measurement.
Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M
The tension in the rope B is determined as 10.9 N.
<h3>Vertical angle of cable B</h3>
tanθ = (6 - 4)/(5 - 0)
tan θ = (2)/(5)
tan θ = 0.4
θ = arc tan(0.4) = 21.8 ⁰
<h3>Angle between B and C</h3>
θ = 21.8 ⁰ + 21.8 ⁰ = 43.6⁰
Apply cosine rule to determine the tension in rope B;
A² = B² + C² - 2BC(cos A)
B = C
A² = B² + B² - (2B²)(cos A)
A² = 2B² - 2B²(cos 43.6)
A² = 0.55B²
B² = A²/0.55
B² = 65.3/0.55
B² = 118.73
B = √(118.73)
B = 10.9 N
Thus, the tension in the rope B is determined as 10.9 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1