Calcite can be either dissolved by groundwater or precipitated by groundwater, depending on several factors including the water temperature, pH, and dissolved ion concentrations. Although calcite is fairly insoluble in cold water, acidity can cause dissolution of calcite and release of carbon dioxide gas.
<u>Answer:</u> The correct answer is
<u>Explanation:</u>
We are given:
The substance having highest positive potential will always get reduced and will undergo reduction reaction. Here, silver will always undergo reduction reaction will get reduced.
Chromium will undergo oxidation reaction and will get oxidized.
The half reactions for the above cell is:
Oxidation half reaction:
Reduction half reaction: ( × 3)
Net equation:
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the of the reaction, we use the equation:
Putting values in above equation, we get:
Hence, the correct answer is
When the moles of CH3COOH = volume of CH3COOH * no.of moles of CH3COOH
moles of CH3COOH = 35ml * 0.15 m/1000 =0.00525 mol
moles of NaOH = volume of NaOH*no.of moles of NaOH
= 17.5 ml * 0.15/1000 = 0.002625
SO the reaction after add the NaOH:
CH3COOH(aq) +OH- (aq) ↔ CH3COO-(aq) +H2O(l)
initial 0.00525 0 0
change - 0.002625 +0.002625 +0.002625
equilibrium 0.002625 0.002625 0.002625
When the total volume = 35ml _ 17.5ml = 52.5ml = 0.0525L
∴[CH3COOH] = 0.002625/0.0525 = 0.05m
and [CH3COO-]= 0.002625/0.0525= 0.05 m
when PKa = -㏒Ka
= -㏒1.8x10^-5 = 4.74
by substitution in the following formula:
PH = Pka + ㏒[CH3COO-]/[CH3COOH]
= 4.74 + ㏒(0.05/0.05) = 4.74
∴PH = 4.74