Atomic mass Calcium = 40.078 a.m.u
40.078 g ---------------- 6.02x10²³ atoms
165 g -------------------- ??
165 x ( 6.02x10²³) / 40.078 => 2.47x10²⁴ atoms
hope this helps!
A redox reaction --> a reaction whereby oxidation & reduction occurs
Reduction:
Charge of Cl2 = 0
Charge of Cl- in NaCl = -1
Hence, since charge of Cl2 decreased from 0 in Cl2 to -1 in NaCl, reduction occured.
Oxidation:
Charge of Na = 0
Charge of Na+ in NaCl = +1
Hence, since charge of Na increased from 0 in Na to +1 in NaCl, oxidation occured.
Since both oxidation & reduction occured in the reaction, it is a redox reaction.
Answer:
Buffer B has the highest buffer capacity.
Buffer C has the lowest buffer capacity.
Explanation:
An effective weak acid-conjugate base buffer should have pH equal to
of the weak acid. For buffers with the same pH, higher the concentrations of the components in a buffer, higher will the buffer capacity.
Acetic acid is a weak acid and
is the conjugate base So, all the given buffers are weak acid-conjugate base buffers. The pH of these buffers are expressed as (Henderson-Hasselbalch):
![pH=pK_{a}(CH_{3}COOH)+log\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28CH_%7B3%7DCOOH%29%2Blog%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)

Buffer A: 
Buffer B: 
Buffer C: 
So, both buffer A and buffer B has same pH value which is also equal to
. Buffer B has higher concentrations of the components as compared to buffer A, Hence, buffer B has the highest buffer capacity.
The pH of buffer C is far away from
. Therefore, buffer C has the lowest buffer capacity.
The formula for pH given the pKa and the concentrations
are:
pH = pKa + log [a–]/[ha]
<span>
Therefore calculating:</span>
3.75 = 3.75 + log [a–]/[ha]
log [a–]/[ha] = 0
[a–]/[ha] = 10^0
<span>[a–]/[ha] = 1</span>