A myoplasty is the surgical repair of a muscle.
So the problem ask to calculate the magnitude of the average force applied to the ball if its mass is 0.2kg changes its velocity from 20m/s to 12m/s and the time contact with the ball with the wall is 60 ms. In my calculation the best answer would be 107N.
Answer:
<em>The number 0.0217 has 3 significant digits</em>
Explanation:
<u>Significant Digits
</u>
These are digits that contribute to the significance of the number. Some rules apply to discard the non-significant digits like:
- Leading zeros
- Trailing zeros (with exceptions)
Our number is 0.0217 has two leading zeros before the 2 because they only occupy space to indicate the order of magnitude of the number. Only the 2,1,7 are significant digits, thus
The number 0.0217 has 3 significant digits
Density = (mass) / (volume)
Density = (20 g) / (5 cm³)
<em>Density = 4 g/cm³</em> .
The density of the substance is greater than the density of water. A lump of the substance <em>will sink in water</em>, <u>unless</u> the lump is formed into a shape that displaces 20 cm³ of water or more, such as a tiny boat shape.
Answer:
(1) 14.12 m/s
Explanation:
Given:
= initial speed of the ball = 16 m/s
= angle of the initial speed with the horizontal axis = 
= initial height of the ball from where Julie throws the ball = 1.5 m
= final position of the ball where Sarah catches the ball = 1.5 m
Let us assume the following:
= horizontal component of the initial speed
= vertical component of the initial speed
= horizontal acceleration of the ball
= vertical acceleration of the ball
The given problem is projectile motion. When the ball is thrown from the air with a speed of 16 m/s at an angle 28 degree with the horizontal axis. When the ball is in the air, it experiences an only gravitational force in the downward direction if we ignore air resistance on the ball.
This means if we break the motion of the ball along two axes and study it, we have a uniform acceleration motion in the vertical direction and a zero acceleration motion along the horizontal.
Since the ball has a zero acceleration motion along the horizontal axis, the ball must have a constant speed along the horizontal at all instant of time.
Let us find out the initial velocity horizontal component of the velocity of the ball. which is given by:

As this horizontal velocity remains constant in the horizontal motion at all instants of time. So, the horizontal component of the ball's velocity when Sarah catches the ball is 14.12 m/s.
Hence, the horizontal component of the ball's velocity when the ball is caught by Sarah is 14.12 m/s.