Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.
Answer:
The last graph.
Explanation:
Gravitational potential energy is the energy possessed by a body at a given height from the Earth's surface.
The formula to find the gravitational potential energy is given as:

Where, 'U' is the gravitational potential energy.
'm' is the mass of the body.
'g' is the acceleration of the body due to gravity.
'h' is the height of the body above the Earth's surface.
So, from the above equation, it is clear that, gravitational potential energy is directly proportional to the height. So, as height increases, the gravitational potential energy increases. At the surface of Earth, where, height is 0, the gravitational potential energy is also zero.
Therefore, the correct graph is a straight line with positive slope and passing through the origin. So, the last option is the correct one.
Answer:
it can be calculated by measuring the final distance away from a point, and then subtracting the initial distance
Answer:

Explanation:
When the rock is immersed in unknown liquid the forces that act on it are shown as under
1) Tension T by the string
2) Weight W of the rock
3) Force of buoyancy due to displaced liquid B
For equilibrium we have 
=
When the rock is suspended in air for equilibrium we have

When the rock is suspended in water for equilibrium we have
+
=
Using the given values of tension and solving α,β,γ simultaneously for
we get

Solving for density of liquid we get


Answer:
27: 85
28:75%
Explanation:
27:68=80
?=100 hence (68×100)÷80
=85
28:<em>1</em><em>8</em><em>/</em><em>2</em><em>4</em><em>×</em><em> </em><em>1</em><em>0</em><em>0</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>7</em><em>5</em><em>%</em>