<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
The light bulb would glow brighter.
<h3>What is Resistance?</h3>
a force that works against a body's direction of motion and seeks to stop or slow down motion, such as friction. a measure of how much a material prevents an electric current from flowing as a result of a voltage.
What is the law of resistance?
Resistance and Ohm's Law. According to Ohm's law, the resistance of the circuit and the current or energy travelling through the resistance are both exactly proportional to the voltage or potential difference between two places.
The current would grow since it is exactly proportionate to the voltage, increasing the light bulb's brilliance, or simply making it brighter.
to learn more about Resistance go to - brainly.com/question/15728236
#SPJ4
To develop this problem it will be necessary to apply the concepts related to the frequency of a spring mass system, for which it is necessary that its mathematical function is described as

Here,
k = Spring constant
m = Mass
Our values are given as,


Rearranging to find the spring constant we have that,




Therefore the spring constant is 1.38N/m
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg