<em>A simple metallic band model is proposed for the transition metal mono antimonides, by analogy to the transition metals.</em>
Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current 
According to ohm's law, V = IR
R = V/I
Here, 

For the second measurement, current 


b) ![y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%26y_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5E%7BT%7D)
![y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%5C%5Cy_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D)
![y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
![x = \left[\begin{array}{ccc}100\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right] = \left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] = \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-5%7D%20%5C%5C97%2A10%5E%7B-5%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
Answer: The force does not change.
Explanation:
The force between two charges q₁ and q₂ is:
F = k*(q₁*q₂)/r^2
where:
k is a constant.
r is the distance between the charges.
Now, if we increase the charge of each particle two times, then the new charges will be: 2*q₁ and 2*q₂.
If we also increase the distance between the charges two times, the new distance will be 2*r
Then the new force between them is:
F = k*(2*q₁*2*q₂)/(2*r)^2 = k*(4*q₁*q₂)/(4*r^2) = (4/4)*k*(q₁*q₂)/r^2 = k*(q₁*q₂)/r^2
This is exactly the same as we had at the beginning, then we can conclude that if we increase each of the charges two times and the distance between the charges two times, the force between the charges does not change.
Answer:
Option C, increases and decreases
Explanation:
When an object making noise approaches you, the wave frequency increases leading to a higher pitch. Conversely, when it moves away from you or retreats, the wave frequency decreases leading to a lower pitch. This can be observed in ambulance sirens.
<span>6160 joules
to lift 1 newton 1 metre requires 1 joule
there are 10 newtons in one kilo
so 77(kg) x 8 (metres) x 10 (newtons/kilo) = 6160 joules</span>