Explanation:
Intermolecular forces hold multiple molecules together and determine many of a substance's properties. All of the attractive forces between neutral atoms and molecules are known as van der Waals forces, although they are usually referred to more informally as intermolecular attraction.
Intermolecular forces are the forces of attraction or repulsion which act between neighboring particles (atoms, molecules, or ions ). These forces are weak compared to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Answer:
b
Explanation:
stable climate will mean there is one climate and we will have the same animals and plants everywere
Explanation:
The observable visible spectrum of Cr(acac)3 complex is different from that of
[Cr(en)3]Br3 due to strength of bonded ligand in the coordination sphere.
en is a strong field ligand compared to acac thus pairing occurs. In both the complexes
Cr is in +3 state, configuration [Ar] 3d^3. There are 3 unpaired e in Cr(acac)3 whereas 1 unpaired e in [Cr(en)3]Br3 due to pairing.
Answer: 0.0220275 M
Explanation:
So, we are given the following data or parameters which are going to help in solving this particular Question/problem.
=> Averagely, we have the volume = 5.0 L of blood in human body .
=> Mass of sugar eaten = 37.7 g of sugar (sucrose, 342.30 g/mol).
Therefore, the molarity of the blood sugar change can be calculated as below:
The molarity of the blood sugar change = (1/ volume) × mass/molar mass.
Thus, the molarity of the blood sugar change = (1/5) × 37.7/342.30 = 0.0220275 M.