Answer:
The probability that none of the LED light bulbs are defective is 0.7374.
Step-by-step explanation:
The complete question is:
What is the probability that none of the LED light bulbs are defective?
Solution:
Let the random variable <em>X</em> represent the number of defective LED light bulbs.
The probability of a LED light bulb being defective is, P (X) = <em>p</em> = 0.03.
A random sample of <em>n</em> = 10 LED light bulbs is selected.
The event of a specific LED light bulb being defective is independent of the other bulbs.
The random variable <em>X</em> thus follows a Binomial distribution with parameters <em>n</em> = 10 and <em>p</em> = 0.03.
The probability mass function of <em>X</em> is:

Compute the probability that none of the LED light bulbs are defective as follows:


Thus, the probability that none of the LED light bulbs are defective is 0.7374.
Answer:
Step-by-step explanation:
o find the unit rate , divide the numerator and denominator of the given rate by the denominator of the given rate.
start with the rate of miles to gallons . then divide , write as a rate.
hope this helps.
where are the following vehicles name
Multiply 9800 by . 2. Then multiply that answer by 15 to get the answer. hope that helps!
Sorry this answer is unacceptable