I think false but I could be wrong I’m sorry
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
The electric potential difference is the electric potential energy per unit charge
Explanation:
First of all, we define the concept of electric potential. The electric potential is a measure of the gradient of the electric field at a certain point of the space. The electric potential at a distance
from a positive charge of magnitude
is given by

where k is the Coulomb's constant.
Now we can define the electric potential energy and the electric potential difference:
- Electric potential energy is the energy possessed by a charge due to the presence of an electric field. For a charge of magnitude
immersed in an electric field, its potential energy is given by
, where V is the electric potential at the location of the charge. - The electric potential difference is simply the difference in electric potential between two points in the space. For instance, if the potential at point A is V(A) and the potential at point B is V(B), then the potential difference is

The electric potential energy is also defined as the work done on a charge q moved through a potential difference of
. Consequently, the potential difference
represents the work per unit charge done, i.e. the work done when moving a unitary charge through a potential difference
.
Learn more about potential difference and current:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
Answer: If there is a higher friction, the opposition force is higher so that it can reduce our speed. So, a factor that affects friction is the roughness or smoothness of the surface of the object. In comparison of the table with the fabric, the fabric will have a more opposition force. As the surface of the fabric is usually rougher than the surface of a smooth table. As there is more friction on a fabric, we will feel more opposition force on our finger tip.