Explanation:
As it is given that hot pan of copper is dropped into a tub of hot water and the temperature of water rises. This means that heat from the pan has been released and this heat is gained by water.
As a result, temperature of copper pan has decreased and this decrease will continue till the time temperature of both copper pan and water will reach the same temperature.
As thermal energy is defined as the energy in which when two objects come in physical contact with each other then no exchange of heat energy will take place.
Thus, we can conclude that when temperature of both copper pan and water will be equal then it means that both of them has reached thermal equilibrium.
Answer: 2.068*
m
Explanation: According to work energy-theorem , the workdone in accelerating the electron equals the energy it would give off in terms of light.
workdone= qV
energy = hc/λ
q=magnitude of an electronic charge= 1.602*
h= planck constant = 6.626*
c= speed of light =2.998* 
v= potential difference= 6*
λ= wavelength=unknown
by making λ subject of formulae we have that
λ= 
λ = 6.626*
* 2.998*
/ 1.602*
* 6*
λ = 
by doing the necessary calculations, we have that
λ = 2.068*
m
Answer:
The velocity of the wave is 12.5 m/s
Explanation:
The given parameters are;
he frequency of the tuning fork, f = 250 Hz
The distance between successive crests of the wave formed, λ = 5 cm = 0.05 m
The velocity of a wave, v = f × λ
Where;
f = The frequency of the wave
λ = The wavelength of the wave - The distance between crests =
Substituting the known values gives;
v = 250 Hz × 0.05 m = 12.5 m/s
The velocity of the wave, v = 12.5 m/s.
Answer:
Solution given:
No of waves[N] =20crests & 20 troughs
=20waves
Time[T]=4seconds
distance[d]=3cm=0.03m
Now
<u>Wave</u><u> </u><u>length</u><u>=</u>3cm=3 × 
<u>Frequency</u>=
=
=5Hertz
and
Wave speed:wave length×frequency=3 ×
×5=1.5 ×
.