From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
<h2>
Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>
Explanation:
Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.
That is force 1 is 100 pound with x axis at 20°
F₁ = 100 cos 20 i + 100 sin 20 j
F₁ = 93.97 i + 34.20 j
That is force 2 is 150 pound with x axis at 60°
F₂ = 150 cos 60 i + 150 sin 60 j
F₂ = 75 i + 129.90 j
F₁ + F₂ = 93.97 i + 34.20 j + 75 i + 129.90 j
F₁ + F₂ = 168.97 i + 164.10 j

Resultant is 235.54 pounds at an angle 44.16° to X axis.
The mass number is the total number of protons and neutrons within an atom and since we know that the unknown element has 6 neutrons, we can simply subtract the number of neutrons from the mass number to get the number of protons.
17 - 6 = 11
There are 11 protons in this unknown element.
Extra:
The number of protons (+) and electrons (-) are equal in a neutral atom so since you know that there are 11 protons you also know that there are 11 electrons. On the periodic table, the element with 11 electrons is Na or Sodium.
Hope this helps! :)
Answer:
10 km East
Displacement is the shortest path between two points.
Answer:
The maximum velocity is 0.377 m/s
Explanation:
Please, the solution is in the Word file attached