The strength of the force of friction depends on two factors; the type of surfaces involves and the force that the surfaces are being push together
At any crime scene, the two greatest challenges to the physical evidence are contamination and loss of continuity.
<h3>What is the meaning of physical evidence?</h3>
In evidence law, physical evidence (also called real evidence or material evidence) is any material object that plays some role in the matter that gave rise to the litigation, introduced as evidence in a judicial proceeding (such as a trial) to prove a fact in issue based on the object's physical characteristics.
The two types of evidence at crime scenes:
Biological evidence (e.g., blood, body fluids, hair and other tissues)
Latent print evidence (e.g., fingerprints, palm prints, footprints)
The biggest impediment to an investigation is the removal or loss of a piece of evidence from the scene of a crime.
Hence, at any crime scene, the two greatest challenges to the physical evidence are contamination and loss of continuity.
Learn more about the physical evidence here:
brainly.com/question/13505766
#SPJ1
False. it's depend on g -constant.
-
Eddy Current Testing
Introduction
Basic Principles
History of ET
Present State of ET
The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag
Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter
Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching
Procedures Issues
Reference Standards
Signal Filtering
Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection
Conductivity
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings
Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.
Quizzes
Formulae& Tables
EC Standards & Methods
EC Material Properties
-
Current Flow and Ohm's Law
Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.
I = V / R 
Where:
I =
Electrical Current (Amperes)
V =
Voltage (Voltage)
R =
Resistance (Ohms)
Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.
The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.
Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.
See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?
Answer:
Travelled 18 km, they are 6 km from home.
Explanation:
12/2 (halfway) is 6km. So, 6 + 12 would be 18 km, total amount travelled. The total distance of the trip would be 24 km (12 km out, 12km back) if they travelled 12+6 (18km) then they only have 6 km more to go.