Given Information:
Magnetic field = B = 1×10⁻³ T
Frequency = f = 72.5 Hz
Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m
Required Information:
Maximum Emf = ?
Answer:
Maximum Emf = 20.66×10⁻¹² volts
Explanation:
The maximum emf generated around the perimeter of a cell in a field is given by
Emf = BAωcos(ωt)
Where A is the area, B is the magnetic field and ω is frequency in rad/sec
For maximum emf cos(ωt) = 1
Emf = BAω
Area is given by
A = πr²
A = π(d/2)²
A = π(7.60×10⁻⁶/2)²
A = 45.36×10⁻¹² m²
We know that,
ω = 2πf
ω = 2π(72.5)
ω = 455.53 rad/sec
Finally, the emf is,
Emf = BAω
Emf = 1×10⁻³*45.36×10⁻¹²*455.53
Emf = 20.66×10⁻¹² volts
Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts
No because sugar is made up of organic material
Answer:
Well, newer telephone circuits built during the last decade are based on the digital transmission, not on the analog transmission. So it's the digital transmission circuit that has made the higher quality. Digital circuits converts the voice signals into the binary codes which is then translated again into the voice signal at the receiving end.
The answer is false.
Explanation:
Amplitude: How dense the medium is in the compression part of the wave, and how empty the rarefied area is.
Frequency: The number of wavelengths that pass a position in 1 second.
loudness: The quality of the sound that is most closely linked to the amplitude of the sound wave.
Period: The amount of time that it takes one wavelength to pass by a position.
Pitch: The quality of the sound that is most closely linked to the frequency of the sound wave.
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
A student measures the speed of yellow light in water to be 2.00 x 10⁸ m/s. Calculate the speed of light in air.
Solution:
Speed of yellow light in water (v) = 2.00 x 10⁸ m/s
Refractive Index of water with respect to air (μ) = 4/3
Refractive Index = Speed of yellow light in air / Speed of yellow light in water
Or, The speed of yellow light in air = Refractive Index × Speed of yellow light in water
or, = (4/3) × 2.00 x 10⁸ m/s
or, = 2.67 × 10⁸ m/s ≈ 3.0 × 10⁸ m/s
Hence, the required speed of yellow light in the air will be 3.0 × 10⁸ m/s.