Oh ok thanks i i miss me calf and she is going on the ground
Answer:
C. More of the heat is transferred to the kinetic energy of the copper atoms than to the kinetic energy of the water molecules.
Explanation:
Both equal masses of water and copper were heated at the same temperature. Since copper is a good conductor of heat compared to water, its absorbs more heat. Which in-turn increases the rate of vibrations of the atoms in the copper mass, thus increasing their kinetic energy.
In the case of water, its molecules displaces one another after being heated to a higher temperature compared to neighboring molecules. So that the heated molecule becomes less dense and floats to the surface of water.
This property of copper makes it to be heated to a higher final temperature than the water.
Answer:
196.34 °F
Explanation:
To convert from degrees celsius to degrees fahrenheit, use this equation:
(°C * 9/5) + 32 = °F
So, using this equation:
(91.30 * 9/5) + 32 = °F
196.34 + 32 = °F
°F = 196.34
Hope this helps!
Yes. It r<span>efers to any of the temperatures assigned to a number of reproducible equilibrium states on the International Practical Temperature Scale</span><span>
In short, Your Answer would be "True"
Hope this helps!</span>
Yes. Partly. Also on the size and shape of the object, and also on what material it's IN at the time ... like air, water, Helium, Jello, etc.