Answer:
The magnetic flux through the desk surface is
.
Explanation:
Given that,
Magnetic field B = 0.42 T
Angle =68°
We need to calculate the magnetic flux

Where, B = magnetic field
A = area
Put the value into the formula



Hence, The magnetic flux through the desk surface is
.
It’s e 2.0 x 10^-4 because it is a fraction
HCl is a strong electrolyte and when it dissolves in water it separates almost completely into positively - charged hydrogen ions and negatively - charged chloride ions. This aqueous solution is usually called hydrochloric acid.
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = (
× mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s
Answer:
<em>Answer: (A) 0.75 m/s^2</em>
Explanation:
The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.
That acceleration is proportional to the net force and inversely proportional to the mass of the object.
It can be expressed with the formula:

Where
Fn = Net force
m = mass
The ice skater pushes against a wall with a force of 59 N. The wall returns the force and the skater now has a net force of Fn=59 N that makes him accelerate. Being m=79 kg the mass of the skater, the acceleration is:


Answer: (A) 0.75 m/s^2