1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
2 years ago
15

Magnesium carbonate and sulphuric acid react to form​

Chemistry
2 answers:
Bas_tet [7]2 years ago
8 0

Answer:

The reaction is the following:

MgCO3 + H2SO4————————→ MgSO4 + CO2 + H2O

You will see evolution of carbon dioxide. It is an exothermic reaction.

Explanation:

What happens when magnesium carbonate reacts with acid?

Like many common group 2 metal carbonates, magnesium carbonate reacts with aqueous acids to release carbon dioxide and water:

MgCO3 + 2 HCl → MgCl2 + CO2 + H2O.

What products are produced when magnesium carbonate reacts with sulfuric acid?

Reactions of acids with carbonates

• Acid + carbonate → salt + water + carbon dioxide.

For example:

• Hydrochloric acid + copper carbonate → copper chloride + water + carbon dioxide.

Other carbonates also react with dilute acids. For example:

• Sulfuric acid + magnesium carbonate → magnesium sulfate + water + carbon dioxide.

Mekhanik [1.2K]2 years ago
4 0

Answer:

magnesium sulfate + water + carbon dioxide

Explanation:

You might be interested in
What is the molarity of 62grams of ammonium in 5liters of water?
Viefleur [7K]

Answer:

Explanation:

First we need to find how many moles of ammonium weigh 62 grams.

Molar mass of NH4 = (14.0)+(4*1.0) grams

or 18.0 grams/mole

62 (g)/18(g/mole) = 3.444... moles of NH4

If it is dissolved in 5 litres of water, the concentration will be 3.444moles/5L

or 0.6888 M.

7 0
3 years ago
) Do you think the pH of 1,0 M tri-methyl ammonium (CH3)3NH+, pKa = 9.80, will be higher or lower than that of 1.0 M phenol, C6H
Elanso [62]

Answer:

1. The pH of 1.0 M trimethyl ammonium (pH = 1.01) is lower than the pH of 0.1 M phenol (5.00).

2. The difference in pH values is 4.95.

Explanation:

1. The pH of a compound can be found using the following equation:

pH = -log([H_{3}O^{+}])

First, we need to find [H₃O⁺] for trimethyl ammonium and for phenol.

<u>Trimethyl ammonium</u>:

We can calculate [H₃O⁺] using the Ka as follows:

(CH₃)₃NH⁺ + H₂O  →  (CH₃)₃N + H₃O⁺    

1.0 - x                               x           x  

Ka = \frac{[(CH_{3})_{3}N][H_{3}O^{+}]}{[(CH_{3})_{3}NH^{+}]}

10^{-pKa} = \frac{x*x}{1.0 - x}

10^{-9.80}(1.0 - x) - x^{2} = 0    

By solving the above equation for x we have:  

x = 0.097 = [H₃O⁺]

pH = -log([H_{3}O^{+}]) = -log(0.097) = 1.01                                      

<u>Phenol</u>:

C₆H₅OH + H₂O → C₆H₅O⁻ + H₃O⁺

1.0 - x                        x             x

Ka = \frac{[C_{6}H_{5}O^{-}][H_{3}O^{+}]}{[C_{6}H_{5}OH]}

10^{-10} = \frac{x^{2}}{1.0 - x}

1.0 \cdot 10^{-10}(1.0 - x) - x^{2} = 0

Solving the above equation for x we have:

x = 9.96x10⁻⁶ = [H₃O⁺]

pH = -log([H_{3}O^{+}]) = -log(9.99 \cdot 10^{-6}) = 5.00

Hence, the pH of 1.0 M trimethyl ammonium is lower than the pH of 0.1 M phenol.

2. The difference in pH values for the two acids is:

\Delta pH = pH_{C_{6}H_{5}OH} - pH_{(CH_{3})_{3}NH^{+}} = 5.00 - 1.01 = 4.95

Therefore, the difference in pH values is 4.95.

I hope it helps you!

7 0
3 years ago
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol. Part A If an enzyme increases the
emmasim [6.3K]

Answer:

The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme

Explanation:

From the given information:

The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.

In this  same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;

Rate factor in the absence of catalyst:

k_1= A*e^{^{^{ \dfrac {- Ea_1}{RT}}

Rate factor in the presence of catalyst:

k_2= A*e^{^{^{ \dfrac {- Ea_2}{RT}}

Assuming the catalyzed reaction and the uncatalyzed reaction are  taking place at the same temperature :

Then;

the ratio of the rate factors can be expressed as:

\dfrac{k_2}{k_1}={  \dfrac {e^{ \dfrac {- Ea_2}{RT} }} { e^{ \dfrac {- Ea_1}{RT} }}

\dfrac{k_2}{k_1}={  \dfrac {e^{[  Ea_1 - Ea_2 ] }}{RT} }}

Thus;

Ea_1-Ea_2 = RT In \dfrac{k_2}{k_1}

Let say the assumed temperature = 25° C

= (25+ 273)K

= 298 K

Then ;

Ea_1-Ea_2 = 8.314 \  J/mol/K * 298 \ K *  In (10^6)

Ea_1-Ea_2 = 34228.92 \ J/mol

\mathbf{Ea_1-Ea_2 = 34.23 \ kJ/mol}

The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme

8 0
3 years ago
The value of h for the reaction below is -73 kj how many kj of heat are released
jarptica [38.1K]
If the value of H is positive, it means you have to add that much heat to complete the reaction. If H is negative, it means that much heat is released during the chemical process. Because it is -73 kJ, 73 kJ of heat are released in the reaction.
7 0
3 years ago
1. Show that heat flows spontaneously from high temperature to low temperature in any isolated system (hint: use entropy change
Inga [223]

Answer:

1 ) Δs ( entropy change for hot block ) = - Q / th  ( -ve shows heat lost to cold block )

Δs ( entropy change for cold block ) = Q / tc

∴ Total Δs = ΔSc + ΔSh

                 = Q/tc - Q/th

2) ΔSdecomposition = Δh / Temp = ( 181.6 * 10^3 / 773 ) = 234.928 J/k

Explanation:

<u>1) To show that heat flows spontaneously from high temperature to low temperature </u>

example :

Pick two(2) solid metal blocks with varying temperatures ( i.e. one solid block is hot and the other solid block is cold )

Place both blocks for time (t ) in an insulated system to reduce heat loss or gain to or from the environment

Check the temperature of both blocks after time ( t ) it will be observed that both blocks will have same temperature after time t ( first law of thermodynamics )

Δs ( entropy change for hot block ) = - Q / th  ( -ve shows heat lost to cold block )

Δs ( entropy change for cold block ) = Q / tc

∴ Total Δs = ΔSc + ΔSh

                 = Q/tc - Q/th

<u>2) Entropy change for Decomposition of mercuric oxide </u>

2HgO (s) → 2Hg(l) + O₂ (g)

Δs = positive

there is transition from solid to liquid and the melting point of mercury ( the point at which reaction will take place ) = 500⁰C

hence ΔSdecomposition = S⁻ Hg  -  S⁻ HgO =

Δh of reaction = 181.6 KJ

Temp = 500 + 273 = 773 k

hence ΔSdecomposition = Δh / Temp = ( 181.6 * 10^3 / 773 ) = 234.928 J/k

8 0
3 years ago
Other questions:
  • Gas particles are pumped into a rigid steel container at a constant temperature. Which statement describes the change in pressur
    15·1 answer
  • Please please help!
    10·1 answer
  • When you find a new source of information, why is it important to think for yourself about whether to use that source?
    11·1 answer
  • Water, h2o, is a molecule made of oxygen and hydrogen. the bonds that hold water molecules together are due to shared electrons,
    5·2 answers
  • If you could answer it would be a huge help, thank you!
    5·2 answers
  • My sporty mini van needs 19,126 kJ of energy in order to pass a fast moving street sweeper on the road. Using the following equa
    6·1 answer
  • Calculate the percent dissociation of crotonic acid (C,H,CO,H) in a 0.63 mM aqueous solution of the stuff.
    5·1 answer
  • Barbara is conducting an experiment to observe heat flow. She places one piece of metal in a freezer at -18 degrees Celsius (°C)
    7·1 answer
  • Need the ionic formula
    10·1 answer
  • Answer these and whoever has best answer get brainlist
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!