<h3>
Answer:</h3>
P₂ = 0.67 atm
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Gas Laws</u>
Boyle's Law: P₁V₁ = P₂V₂
- P₁ is pressure 1
- V₁ is volume 1
- P₂ is pressure 2
- V₂ is volume 2
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] P₁ = 2.02 atm
[Given] V₁ = 4.0 L
[Given] V₂ = 12.0 L
[Solve] P₂
<u>Step 2: Solve</u>
- Substitute in variables [Boyle's Law]: (2.02 atm)(4.0 L) = P₂(12.0 L)
- [Pressure] Multiply: 8.08 atm · L = P₂(12.0 L)
- [Pressure] [Division Property of Equality] Isolate unknown: 0.673333 atm = P₂
- [Pressure] Rewrite: P₂ = 0.673333 atm
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our smallest.</em>
0.673333 atm ≈ 0.67 atm
EASY AS PIE AND I LIKE PIE
Calcium iodide (CaI2) is an ionic bond, which means that electrons are transferred. In order for Ca to become the ion Ca2+, the calcium atom must lose 2 electrons. (Electrons have a negative charge, so when an atom loses 2 electrons, its ion becomes more positive.) In order for I to become the ion I1−, the iodine atom must gain 1 electron. (When an atom gains an electron, its ion will be more negative.) However, the formula for calcium iodide is CaI2 - there are 2 iodine ions present. This makes sense because the iodine ion has a charge of -1, so two iodine ions have to be present to cancel out the +2 charge of the calcium ion. Therefore, the calcium atom transfers 2 valence electrons, one to each iodine atom, to form the ionic bond.
IF WRONG, SORRY
Answer:
D. Atoms are like solid balls
Explanation:
John Dalton proposed that all matter is composed of very small things which he called atoms. This was not a completely new concept as the ancient Greeks (notably Democritus) had proposed that all matter is composed of small, indivisible (cannot be divided) objects. When Dalton proposed his model electrons and the nucleus were unknown.
Answer:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases.
Explanation:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases