Answer:
Option C )The number of atoms of each element is the same on each side of the equation.
Explanation:
When water is frozen then it is known as ice and its state is solid. So, its molecules will be held closer to each other as they are held by strong intermolecular forces of attraction.
As a result, its temperature will be minimum as its molecules have least kinetic energy.
It is known that kinetic energy of a substance is directly proportional to temperature.
As, K.E = 
where K.E = kinetic energy
T = temperature
k = boltzmann constant
When solid changes into liquid state then it means molecules of a substance has gained kinetic energy due to which there occurs more collisions between the molecules.
Hence, temperature of substance also increases.
Whereas when liquid state of a substance changes intro vapor state then it means that more kinetic energy has gained by the molecules due to which there will be much more collisions between the molecules.
Hence, temperature will be maximum in vapor state.
Answer:
B.) Trigonal planar
Explanation:
This molecule has 3 bonds and no lone pairs. The angles are all 120° and the bonds are within the same plane. These molecules have the molecular shape of trigonal planar.
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
Group 1 and 2 elements
Explanation:
Nitrogen, a non-metal will form ionic bonds with most group 1 and group 2 metals on the periodic table.
How does ionic bonds form?
- They are bonds formed between a highly electronegative specie and one with very low electronegativity.
- As such, ionic bonds forms between metals and non-metals
- In this bond type, the metal due to its electropositive nature will transfer electrons to the non-metals for it to gain.
- The non-metals becomes negatively charged as the metal is positively charged.
- The electrostatic attraction between the two specie leads to the formation of ionic bonds.
Most metals in group 1 and 2 fits in this description. Some of them are calcium, magnesium, lithium, Barium e.t.c.
It mostly favors group 2 metals.