I would go with salt in ocean water as when you heat it and the water begins to evaporate it will leave the salt behind
Also water in mud as the water would evaporate and leave the mud residue behind
GOOD LUCK
BRAINLIEST IF HELPED
<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Answer:
Velocity = 3.25[m/s]
Explanation:
This problem can be solved if we use the Bernoulli equation: In the attached image we can see the conditions of the water inside the container.
In point 1, (surface of the water) we have the atmospheric pressure and at point 2 the water is coming out also at atmospheric pressure, therefore this members in the Bernoulli equation could be cancelled.
The velocity in the point 1 is zero because we have this conditional statement "The water surface drops very slowly and its speed is approximately zero"
h2 is located at point 2 and it will be zero.
![(P_{1} +\frac{v_{1}^{2} }{2g} +h_{1} )=(P_{2} +\frac{v_{2}^{2} }{2g} +h_{2} )\\P_{1} =P_{2} \\v_{1}=0\\h_{2} =0\\v_{2}=\sqrt{0.54*9.81*2}\\v_{2}=3.25[m/s]](https://tex.z-dn.net/?f=%28P_%7B1%7D%20%2B%5Cfrac%7Bv_%7B1%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B1%7D%20%29%3D%28P_%7B2%7D%20%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B2%7D%20%29%5C%5CP_%7B1%7D%20%3DP_%7B2%7D%20%5C%5Cv_%7B1%7D%3D0%5C%5Ch_%7B2%7D%20%3D0%5C%5Cv_%7B2%7D%3D%5Csqrt%7B0.54%2A9.81%2A2%7D%5C%5Cv_%7B2%7D%3D3.25%5Bm%2Fs%5D)