Answer:
2C8H18(l) + O2(g)--->CO2(g)+H2O
Answer:
V2= 0.0796m3
Explanation:
We have that for a real gas the following relation is fulfilled:
PV / T = constant
To use this formula I need to pass the pressure of mmHg to KPa and the volume of L to m3, knowing that
1Kpa = 7.50062mmHg
1L = 0.001m3
So i can say
P1V1/T1 =P2V2/T2
So
V2= P1V1T2/P2T1
V2= 51.60KPa*0.034m3*350k/36.53KPa*211k
finally
V2= 0.0796m3
The heat of the reaction is an extensive property: it is proportional to the quantity of the quantity that reacts.
The change in enthalpy is a measured of the heat evolved of absorbed.
When the heat is released, the change in enthalpy is negative.
The reaction of 2 moles of Na develops 368.4 kj of energy.
Calculate the number of moles of Na in 1.90 g to find the heat released when this quantity reacts.
Atomic mass of Na: 23 g/mol
#mol Na = 1.90 g / 23 g/mol = 0.0826 mol
Do the ratios: [368.4 kj/2mol ] * 0.0826 mol = 15.21 kj.
Then the answer is that 15.21 kj of heat is released (evolved)
Answer:
vibrations and lots of girls screaming for sure
Explanation: and I dont know if this conts